These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 32640628)

  • 1. Foot-Mounted Pedestrian Navigation Method by Comparing ADR and Modified ZUPT Based on MEMS IMU Array.
    Xing L; Tu X; Chen Z
    Sensors (Basel); 2020 Jul; 20(13):. PubMed ID: 32640628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Performance Enhancement of Pedestrian Navigation Systems Based on Low-Cost Foot-Mounted MEMS-IMU/Ultrasonic Sensor.
    Xia M; Xiu C; Yang D; Wang L
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30658458
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Error Compensation Method for Pedestrian Navigation System Based on Low-Cost Inertial Sensor Array.
    Cao L; Luo X; Liu L; Wang G; Zhou J
    Sensors (Basel); 2024 Mar; 24(7):. PubMed ID: 38610444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Pedestrian Navigation Based on Course Angle Error Estimation Using Cascaded Kalman Filters.
    Song JW; Park CG
    Sensors (Basel); 2018 Apr; 18(4):. PubMed ID: 29690539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Applying a ToF/IMU-Based Multi-Sensor Fusion Architecture in Pedestrian Indoor Navigation Methods.
    Farhangian F; Sefidgar M; Landry RJ
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34067380
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Novel 3D Pedestrian Navigation Method for a Multiple Sensors-Based Foot-Mounted Inertial System.
    Yang W; Xiu C; Zhang J; Yang D
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29165377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Smartphone Heading Correction Based on Gravity Assisted and Middle Time Simulated-Zero Velocity Update Method.
    Zeng Q; Zeng S; Liu J; Meng Q; Chen R; Huang H
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30301281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research on the Forward and Reverse Calculation Based on the Adaptive Zero-Velocity Interval Adjustment for the Foot-Mounted Inertial Pedestrian-Positioning System.
    Wang Q; Guo Z; Sun Z; Cui X; Liu K
    Sensors (Basel); 2018 May; 18(5):. PubMed ID: 29883399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Drift Reduction Methods in Foot-Mounted PDR System.
    Zhang W; Wei D; Yuan H
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31540322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RTK with the Assistance of an IMU-Based Pedestrian Navigation Algorithm for Smartphones.
    Niu Z; Nie P; Tao L; Sun J; Zhu B
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31336694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Improved Method for Indoor 3D Pedestrian Positioning Based on Dual Foot-Mounted IMU System.
    Jia H; Yu B; Li H; Pan S; Li J; Wang X; Huang L
    Micromachines (Basel); 2023 Nov; 14(12):. PubMed ID: 38138361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Research on an Improved Method for Foot-Mounted Inertial/Magnetometer Pedestrian-Positioning Based on the Adaptive Gradient Descent Algorithm.
    Wang Q; Yin J; Noureldin A; Iqbal U
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30477156
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Heuristic Drift Elimination with Adaptive Zero-Velocity Detection and Heading Correction Algorithms for Pedestrian Navigation.
    Zhu R; Wang Y; Yu B; Gan X; Jia H; Wang B
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32053884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Indoor Positioning System Based on Chest-Mounted IMU.
    Lu C; Uchiyama H; Thomas D; Shimada A; Taniguchi RI
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30669617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Novel Zero-Velocity Interval Detection Algorithm for a Pedestrian Navigation System with Foot-Mounted Inertial Sensors.
    Wang X; Li J; Xu G; Wang X
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinematic Model-Based Pedestrian Dead Reckoning for Heading Correction and Lower Body Motion Tracking.
    Lee MS; Ju H; Song JW; Park CG
    Sensors (Basel); 2015 Nov; 15(11):28129-53. PubMed ID: 26561814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Secure ZUPT-Aided Indoor Navigation System Using Blockchain in GNSS-Denied Environments.
    Shakerian A; Eghmazi A; Goasdoué J; Landry RJ
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514686
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improved Pedestrian Dead Reckoning Based on a Robust Adaptive Kalman Filter for Indoor Inertial Location System.
    Fan Q; Zhang H; Pan P; Zhuang X; Jia J; Zhang P; Zhao Z; Zhu G; Tang Y
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30642088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-Time Pedestrian Tracking Terminal Based on Adaptive Zero Velocity Update.
    Wei R; Xu H; Yang M; Yu X; Xiao Z; Yan B
    Sensors (Basel); 2021 May; 21(11):. PubMed ID: 34072810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Pedestrian Navigation Algorithm for a Foot-Mounted Inertial-Sensor-Based System.
    Ren M; Pan K; Liu Y; Guo H; Zhang X; Wang P
    Sensors (Basel); 2016 Jan; 16(1):. PubMed ID: 26805848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.