These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 32640804)

  • 21. Unidirectional drying of a suspension of diffusiophoretic colloids under gravity.
    Xu J; Wang Z; Chu HCW
    RSC Adv; 2023 Mar; 13(14):9247-9259. PubMed ID: 36950706
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Active Matter, Microreversibility, and Thermodynamics.
    Gaspard P; Kapral R
    Research (Wash D C); 2020; 2020():9739231. PubMed ID: 32524094
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microrheology of colloidal suspensions via dynamic Monte Carlo simulations.
    García Daza FA; Puertas AM; Cuetos A; Patti A
    J Colloid Interface Sci; 2022 Jan; 605():182-192. PubMed ID: 34325340
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Artificial Chemotaxis of Self-Phoretic Active Colloids: Collective Behavior.
    Stark H
    Acc Chem Res; 2018 Nov; 51(11):2681-2688. PubMed ID: 30346724
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The behavior of active diffusiophoretic suspensions: An accelerated Laplacian dynamics study.
    Yan W; Brady JF
    J Chem Phys; 2016 Oct; 145(13):134902. PubMed ID: 27782418
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Pickering Emulsion Route to Swimming Active Janus Colloids.
    Archer RJ; Parnell AJ; Campbell AI; Howse JR; Ebbens SJ
    Adv Sci (Weinh); 2018 Feb; 5(2):1700528. PubMed ID: 29619303
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Driving dynamic colloidal assembly using eccentric self-propelled colloids.
    Ma Z; Lei QL; Ni R
    Soft Matter; 2017 Dec; 13(47):8940-8946. PubMed ID: 29144529
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Active rotational dynamics of a self-diffusiophoretic colloidal motor.
    Reigh SY; Huang MJ; Löwen H; Lauga E; Kapral R
    Soft Matter; 2020 Feb; 16(5):1236-1245. PubMed ID: 31904757
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Rational design and dynamics of self-propelled colloidal bead chains: from rotators to flagella.
    Vutukuri HR; Bet B; van Roij R; Dijkstra M; Huck WTS
    Sci Rep; 2017 Dec; 7(1):16758. PubMed ID: 29196659
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hybrid colloidal microswimmers through sequential capillary assembly.
    Ni S; Marini E; Buttinoni I; Wolf H; Isa L
    Soft Matter; 2017 Jun; 13(23):4252-4259. PubMed ID: 28573270
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Collective dynamics of diffusiophoretic motors on a filament.
    Huang MJ; Kapral R
    Eur Phys J E Soft Matter; 2016 Mar; 39(3):36. PubMed ID: 27021653
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Non-Equilibrium Assembly of Light-Activated Colloidal Mixtures.
    Singh DP; Choudhury U; Fischer P; Mark AG
    Adv Mater; 2017 Aug; 29(32):. PubMed ID: 28632337
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rheological implications of embedded active matter in colloidal gels.
    Szakasits ME; Saud KT; Mao X; Solomon MJ
    Soft Matter; 2019 Oct; 15(40):8012-8021. PubMed ID: 31497836
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Shape- and Material-Dependent Self-Propulsion of Photocatalytic Active Colloids, Interfacial Effects, and Dynamic Interparticle Interactions.
    Gibbs JG
    Langmuir; 2020 Jun; 36(25):6938-6947. PubMed ID: 31738561
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemical Nanomotors at the Gram Scale Form a Dense Active Optorheological Medium.
    Choudhury U; Singh DP; Qiu T; Fischer P
    Adv Mater; 2019 Mar; 31(12):e1807382. PubMed ID: 30697826
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clustering-induced velocity-reversals of active colloids mixed with passive particles.
    Hauke F; Löwen H; Liebchen B
    J Chem Phys; 2020 Jan; 152(1):014903. PubMed ID: 31914737
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Many-body dynamics of chemically propelled nanomotors.
    Colberg PH; Kapral R
    J Chem Phys; 2017 Aug; 147(6):064910. PubMed ID: 28810764
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced active motion of Janus colloids at the water surface.
    Wang X; In M; Blanc C; Nobili M; Stocco A
    Soft Matter; 2015 Oct; 11(37):7376-84. PubMed ID: 26268395
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Chemical micromotors self-assemble and self-propel by spontaneous symmetry breaking.
    Yu T; Chuphal P; Thakur S; Reigh SY; Singh DP; Fischer P
    Chem Commun (Camb); 2018 Oct; 54(84):11933-11936. PubMed ID: 30285014
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Numerical simulations of self-diffusiophoretic colloids at fluid interfaces.
    Peter T; Malgaretti P; Rivas N; Scagliarini A; Harting J; Dietrich S
    Soft Matter; 2020 Apr; 16(14):3536-3547. PubMed ID: 32215402
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.