These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 32641141)

  • 21. Differential expression of single-cell RNA-seq data using Tweedie models.
    Mallick H; Chatterjee S; Chowdhury S; Chatterjee S; Rahnavard A; Hicks SC
    Stat Med; 2022 Aug; 41(18):3492-3510. PubMed ID: 35656596
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Detecting differential alternative splicing events in scRNA-seq with or without Unique Molecular Identifiers.
    Hu Y; Wang K; Li M
    PLoS Comput Biol; 2020 Jun; 16(6):e1007925. PubMed ID: 32502143
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Falco: a quick and flexible single-cell RNA-seq processing framework on the cloud.
    Yang A; Troup M; Lin P; Ho JW
    Bioinformatics; 2017 Mar; 33(5):767-769. PubMed ID: 28025200
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigating transcriptome-wide sex dimorphism by multi-level analysis of single-cell RNA sequencing data in ten mouse cell types.
    Lu T; Mar JC
    Biol Sex Differ; 2020 Nov; 11(1):61. PubMed ID: 33153500
    [TBL] [Abstract][Full Text] [Related]  

  • 25. scMAPA: Identification of cell-type-specific alternative polyadenylation in complex tissues.
    Bai Y; Qin Y; Fan Z; Morrison RM; Nam K; Zarour HM; Koldamova R; Padiath QS; Kim S; Park HJ
    Gigascience; 2022 Apr; 11():. PubMed ID: 35488860
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Differential transcript usage analysis of bulk and single-cell RNA-seq data with DTUrtle.
    Tekath T; Dugas M
    Bioinformatics; 2021 Nov; 37(21):3781-3787. PubMed ID: 34469510
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ReadZS detects cell type-specific and developmentally regulated RNA processing programs in single-cell RNA-seq.
    Meyer E; Chaung K; Dehghannasiri R; Salzman J
    Genome Biol; 2022 Oct; 23(1):226. PubMed ID: 36284317
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Alternative polyadenylation of single cells delineates cell types and serves as a prognostic marker in early stage breast cancer.
    Kim N; Chung W; Eum HH; Lee HO; Park WY
    PLoS One; 2019; 14(5):e0217196. PubMed ID: 31100099
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Alternative polyadenylation analysis in animals and plants: newly developed strategies for profiling, processing and validation.
    Zhang Y; Carrion SA; Zhang Y; Zhang X; Zinski AL; Michal JJ; Jiang Z
    Int J Biol Sci; 2018; 14(12):1709-1714. PubMed ID: 30416385
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Implications of polyadenylation in health and disease.
    Curinha A; Oliveira Braz S; Pereira-Castro I; Cruz A; Moreira A
    Nucleus; 2014; 5(6):508-19. PubMed ID: 25484187
    [TBL] [Abstract][Full Text] [Related]  

  • 31. bayNorm: Bayesian gene expression recovery, imputation and normalization for single-cell RNA-sequencing data.
    Tang W; Bertaux F; Thomas P; Stefanelli C; Saint M; Marguerat S; Shahrezaei V
    Bioinformatics; 2020 Feb; 36(4):1174-1181. PubMed ID: 31584606
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of cell barcodes from long-read single-cell RNA-seq with BLAZE.
    You Y; Prawer YDJ; De Paoli-Iseppi R; Hunt CPJ; Parish CL; Shim H; Clark MB
    Genome Biol; 2023 Apr; 24(1):66. PubMed ID: 37024980
    [TBL] [Abstract][Full Text] [Related]  

  • 33. scAPAmod: Profiling Alternative Polyadenylation Modalities in Single Cells from Single-Cell RNA-Seq Data.
    Qian L; Fu H; Mou Y; Lin W; Ye L; Ji G
    Int J Mol Sci; 2022 Jul; 23(15):. PubMed ID: 35897701
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evaluation of methods to assign cell type labels to cell clusters from single-cell RNA-sequencing data.
    Diaz-Mejia JJ; Meng EC; Pico AR; MacParland SA; Ketela T; Pugh TJ; Bader GD; Morris JH
    F1000Res; 2019; 8():. PubMed ID: 31508207
    [No Abstract]   [Full Text] [Related]  

  • 35. DECENT: differential expression with capture efficiency adjustmeNT for single-cell RNA-seq data.
    Ye C; Speed TP; Salim A
    Bioinformatics; 2019 Dec; 35(24):5155-5162. PubMed ID: 31197307
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CONICS integrates scRNA-seq with DNA sequencing to map gene expression to tumor sub-clones.
    Müller S; Cho A; Liu SJ; Lim DA; Diaz A
    Bioinformatics; 2018 Sep; 34(18):3217-3219. PubMed ID: 29897414
    [TBL] [Abstract][Full Text] [Related]  

  • 37. scDoc: correcting drop-out events in single-cell RNA-seq data.
    Ran D; Zhang S; Lytal N; An L
    Bioinformatics; 2020 Aug; 36(15):4233-4239. PubMed ID: 32365169
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cell-level somatic mutation detection from single-cell RNA sequencing.
    Vu TN; Nguyen HN; Calza S; Kalari KR; Wang L; Pawitan Y
    Bioinformatics; 2019 Nov; 35(22):4679-4687. PubMed ID: 31028395
    [TBL] [Abstract][Full Text] [Related]  

  • 39. WAT3R: recovery of T-cell receptor variable regions from 3' single-cell RNA-sequencing.
    Ainciburu M; Morgan DM; DePasquale EAK; Love JC; Prósper F; van Galen P
    Bioinformatics; 2022 Jul; 38(14):3645-3647. PubMed ID: 35674381
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A guide to single-cell RNA sequencing analysis using web-based tools for non-bioinformatician.
    Yarlagadda S; Giorgio TD
    FEBS J; 2024 Jun; 291(12):2545-2561. PubMed ID: 38148322
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.