BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

469 related articles for article (PubMed ID: 32641389)

  • 21. New insights into the pathogenesis and treatment of idiopathic pulmonary fibrosis.
    Ding Q; Luckhardt T; Hecker L; Zhou Y; Liu G; Antony VB; deAndrade J; Thannickal VJ
    Drugs; 2011 May; 71(8):981-1001. PubMed ID: 21668038
    [TBL] [Abstract][Full Text] [Related]  

  • 22. NFATc3 and VIP in Idiopathic Pulmonary Fibrosis and Chronic Obstructive Pulmonary Disease.
    Szema AM; Forsyth E; Ying B; Hamidi SA; Chen JJ; Hwang S; Li JC; Sabatini Dwyer D; Ramiro-Diaz JM; Giermakowska W; Gonzalez Bosc LV
    PLoS One; 2017; 12(1):e0170606. PubMed ID: 28125639
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cellular stress responses and dysfunctional Mitochondrial-cellular senescence, and therapeutics in chronic respiratory diseases.
    Manevski M; Muthumalage T; Devadoss D; Sundar IK; Wang Q; Singh KP; Unwalla HJ; Chand HS; Rahman I
    Redox Biol; 2020 Jun; 33():101443. PubMed ID: 32037306
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative proteomic characterization of the lung extracellular matrix in chronic obstructive pulmonary disease and idiopathic pulmonary fibrosis.
    Åhrman E; Hallgren O; Malmström L; Hedström U; Malmström A; Bjermer L; Zhou XH; Westergren-Thorsson G; Malmström J
    J Proteomics; 2018 Oct; 189():23-33. PubMed ID: 29501846
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Proteomic studies on receptor for advanced glycation end product variants in idiopathic pulmonary fibrosis and chronic obstructive pulmonary disease.
    Ohlmeier S; Mazur W; Salmenkivi K; Myllärniemi M; Bergmann U; Kinnula VL
    Proteomics Clin Appl; 2010 Jan; 4(1):97-105. PubMed ID: 21137019
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mitochondria, telomeres and cell senescence: Implications for lung ageing and disease.
    Birch J; Barnes PJ; Passos JF
    Pharmacol Ther; 2018 Mar; 183():34-49. PubMed ID: 28987319
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Role of Epithelial Damage in the Pulmonary Immune Response.
    Burgoyne RA; Fisher AJ; Borthwick LA
    Cells; 2021 Oct; 10(10):. PubMed ID: 34685744
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Trade-offs in aging lung diseases: a review on shared but opposite genetic risk variants in idiopathic pulmonary fibrosis, lung cancer and chronic obstructive pulmonary disease.
    van Moorsel CHM
    Curr Opin Pulm Med; 2018 May; 24(3):309-317. PubMed ID: 29517586
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ceramide expression and cell homeostasis in chronic obstructive pulmonary disease.
    Scarpa MC; Baraldo S; Marian E; Turato G; Calabrese F; Saetta M; Maestrelli P
    Respiration; 2013; 85(4):342-9. PubMed ID: 23018286
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Cellular Senescence as a Mechanism and Target in Chronic Lung Diseases.
    Barnes PJ; Baker J; Donnelly LE
    Am J Respir Crit Care Med; 2019 Sep; 200(5):556-564. PubMed ID: 30860857
    [TBL] [Abstract][Full Text] [Related]  

  • 31. COPD as a disease of accelerated lung aging.
    Ito K; Barnes PJ
    Chest; 2009 Jan; 135(1):173-180. PubMed ID: 19136405
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mitochondria in the spotlight of aging and idiopathic pulmonary fibrosis.
    Mora AL; Bueno M; Rojas M
    J Clin Invest; 2017 Feb; 127(2):405-414. PubMed ID: 28145905
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis.
    Kliment CR; Oury TD
    Free Radic Biol Med; 2010 Sep; 49(5):707-17. PubMed ID: 20452419
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Senotherapeutics: Targeting senescence in idiopathic pulmonary fibrosis.
    Merkt W; Bueno M; Mora AL; Lagares D
    Semin Cell Dev Biol; 2020 May; 101():104-110. PubMed ID: 31879264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mitochondrial Quality Control in Age-Related Pulmonary Fibrosis.
    Roque W; Cuevas-Mora K; Romero F
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31963720
    [TBL] [Abstract][Full Text] [Related]  

  • 36. COPD, Pulmonary Fibrosis and ILAs in Aging Smokers: The Paradox of Striking Different Responses to the Major Risk Factors.
    Beghé B; Cerri S; Fabbri LM; Marchioni A
    Int J Mol Sci; 2021 Aug; 22(17):. PubMed ID: 34502194
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chronic WNT/β-catenin signaling induces cellular senescence in lung epithelial cells.
    Lehmann M; Hu Q; Hu Y; Hafner K; Costa R; van den Berg A; Königshoff M
    Cell Signal; 2020 Jun; 70():109588. PubMed ID: 32109549
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cigarette smoke-induced autophagy impairment accelerates lung aging, COPD-emphysema exacerbations and pathogenesis.
    Vij N; Chandramani-Shivalingappa P; Van Westphal C; Hole R; Bodas M
    Am J Physiol Cell Physiol; 2018 Jan; 314(1):C73-C87. PubMed ID: 27413169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Targeting Alveolar Repair in Idiopathic Pulmonary Fibrosis.
    Ptasinski VA; Stegmayr J; Belvisi MG; Wagner DE; Murray LA
    Am J Respir Cell Mol Biol; 2021 Oct; 65(4):347-365. PubMed ID: 34129811
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Accelerated ageing of the lung in COPD: new concepts.
    Mercado N; Ito K; Barnes PJ
    Thorax; 2015 May; 70(5):482-9. PubMed ID: 25739910
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 24.