These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32641472)

  • 1. Variation in Maize Chlorophyll Biosynthesis Alters Plant Architecture.
    Khangura RS; Johal GS; Dilkes BP
    Plant Physiol; 2020 Sep; 184(1):300-315. PubMed ID: 32641472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction Between Induced and Natural Variation at
    Khangura RS; Venkata BP; Marla SR; Mickelbart MV; Dhungana S; Braun DM; Dilkes BP; Johal GS
    G3 (Bethesda); 2020 Feb; 10(2):797-810. PubMed ID: 31822516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A
    Khangura RS; Marla S; Venkata BP; Heller NJ; Johal GS; Dilkes BP
    G3 (Bethesda); 2019 Feb; 9(2):375-390. PubMed ID: 30518539
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The maize Oil yellow1 (Oy1) gene encodes the I subunit of magnesium chelatase.
    Sawers RJ; Viney J; Farmer PR; Bussey RR; Olsefski G; Anufrikova K; Hunter CN; Brutnell TP
    Plant Mol Biol; 2006 Jan; 60(1):95-106. PubMed ID: 16463102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. grassy tillers1 promotes apical dominance in maize and responds to shade signals in the grasses.
    Whipple CJ; Kebrom TH; Weber AL; Yang F; Hall D; Meeley R; Schmidt R; Doebley J; Brutnell TP; Jackson DP
    Proc Natl Acad Sci U S A; 2011 Aug; 108(33):E506-12. PubMed ID: 21808030
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tillering in the sugary1 sweet corn is maintained by overriding the teosinte branched1 repressive signal.
    Kebrom TH; Brutnell TP
    Plant Signal Behav; 2015; 10(12):e1078954. PubMed ID: 26399727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of altered dosage of a mutant allele of Teosinte branched 1 (tb1-ref) on the root system of modern maize.
    Gaudin AC; McClymont SA; Soliman SS; Raizada MN
    BMC Genet; 2014 Feb; 15():23. PubMed ID: 24524734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SUPPRESSOR OF APICAL DOMINANCE1 of Sporisorium reilianum Modulates Inflorescence Branching Architecture in Maize and Arabidopsis.
    Ghareeb H; Drechsler F; Löfke C; Teichmann T; Schirawski J
    Plant Physiol; 2015 Dec; 169(4):2789-804. PubMed ID: 26511912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expression patterns and mutant phenotype of teosinte branched1 correlate with growth suppression in maize and teosinte.
    Hubbard L; McSteen P; Doebley J; Hake S
    Genetics; 2002 Dec; 162(4):1927-35. PubMed ID: 12524360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Natural variation in maize architecture is mediated by allelic differences at the PINOID co-ortholog barren inflorescence2.
    Pressoir G; Brown PJ; Zhu W; Upadyayula N; Rocheford T; Buckler ES; Kresovich S
    Plant J; 2009 May; 58(4):618-28. PubMed ID: 19154226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerium relieves the inhibition of chlorophyll biosynthesis of maize caused by magnesium deficiency.
    Zhou M; Gong X; Ying W; Chao L; Hong M; Wang L; Fashui H
    Biol Trace Elem Res; 2011 Oct; 143(1):468-77. PubMed ID: 20798996
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Major regulatory genes in maize contribute to standing variation in teosinte (Zea mays ssp. parviglumis).
    Weber A; Clark RM; Vaughn L; Sánchez-Gonzalez Jde J; Yu J; Yandell BS; Bradbury P; Doebley J
    Genetics; 2007 Dec; 177(4):2349-59. PubMed ID: 17947410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulatory modules controlling maize inflorescence architecture.
    Eveland AL; Goldshmidt A; Pautler M; Morohashi K; Liseron-Monfils C; Lewis MW; Kumari S; Hiraga S; Yang F; Unger-Wallace E; Olson A; Hake S; Vollbrecht E; Grotewold E; Ware D; Jackson D
    Genome Res; 2014 Mar; 24(3):431-43. PubMed ID: 24307553
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A G protein alpha null mutation confers prolificacy potential in maize.
    Urano D; Jackson D; Jones AM
    J Exp Bot; 2015 Aug; 66(15):4511-5. PubMed ID: 25948706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological and comparative proteome analyses reveal low-phosphate tolerance and enhanced photosynthesis in a maize mutant owing to reinforced inorganic phosphate recycling.
    Zhang K; Liu H; Song J; Wu W; Li K; Zhang J
    BMC Plant Biol; 2016 Jun; 16(1):129. PubMed ID: 27277671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for a natural allelic series at the maize domestication locus teosinte branched1.
    Studer AJ; Doebley JF
    Genetics; 2012 Jul; 191(3):951-8. PubMed ID: 22505628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative genetic analysis of chlorophyll a fluorescence parameters in maize in the field environments.
    Šimić D; Lepeduš H; Jurković V; Antunović J; Cesar V
    J Integr Plant Biol; 2014 Jul; 56(7):695-708. PubMed ID: 24521148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A distant upstream enhancer at the maize domestication gene tb1 has pleiotropic effects on plant and inflorescent architecture.
    Clark RM; Wagler TN; Quijada P; Doebley J
    Nat Genet; 2006 May; 38(5):594-7. PubMed ID: 16642024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. teosinte branched1 and the origin of maize: evidence for epistasis and the evolution of dominance.
    Doebley J; Stec A; Gustus C
    Genetics; 1995 Sep; 141(1):333-46. PubMed ID: 8536981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The regulatory landscape of a core maize domestication module controlling bud dormancy and growth repression.
    Dong Z; Xiao Y; Govindarajulu R; Feil R; Siddoway ML; Nielsen T; Lunn JE; Hawkins J; Whipple C; Chuck G
    Nat Commun; 2019 Aug; 10(1):3810. PubMed ID: 31444327
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.