BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 32641606)

  • 1. Enzymatic Preparation and Oxidative Stability of Human Milk Fat Substitute Containing Polyunsaturated Fatty Acid Located at sn-2 Position.
    Ogasawara S; Ogawa S; Yamamoto Y; Hara S
    J Oleo Sci; 2020 Aug; 69(8):825-835. PubMed ID: 32641606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic preparation of human milk fat substitutes and their oxidation stability.
    Kotani K; Yamamoto Y; Hara S
    J Oleo Sci; 2015; 64(3):275-81. PubMed ID: 25757431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Enzymatic Preparation of Human Milk Fat Substitute Intermediate Rich in Palmitic Acid at sn-2 Position and Low-Unsaturated Fatty Acids at sn-1(3) Positions from Palm Oil Substrate.
    Shimane K; Ogawa S; Yamamoto Y; Hara S
    J Oleo Sci; 2021 Feb; 70(2):165-173. PubMed ID: 33455999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipozyme RM IM-catalyzed acidolysis of Cinnamomum camphora seed oil with oleic acid to produce human milk fat substitutes enriched in medium-chain fatty acids.
    Zou XG; Hu JN; Zhao ML; Zhu XM; Li HY; Liu XR; Liu R; Deng ZY
    J Agric Food Chem; 2014 Oct; 62(43):10594-603. PubMed ID: 25298236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of human milk fat substitutes from palm stearin with arachidonic and docosahexaenoic acid: combination of enzymatic and physical methods.
    Zou XQ; Huang JH; Jin QZ; Liu YF; Tao GJ; Cheong LZ; Wang XG
    J Agric Food Chem; 2012 Sep; 60(37):9415-23. PubMed ID: 22920386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of new human milk fat substitutes by enzymatic acidolysis of microalgae oils from Nannochloropsis oculata and Isochrysis galbana.
    He Y; Qiu C; Guo Z; Huang J; Wang M; Chen B
    Bioresour Technol; 2017 Aug; 238():129-138. PubMed ID: 28433900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile and Green Production of Human Milk Fat Substitute through
    Zhang LS; Chu MY; Zong MH; Yang JG; Lou WY
    J Agric Food Chem; 2020 Sep; 68(35):9368-9376. PubMed ID: 32700528
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Triacylglycerol Molecular Species on the Oxidation Behavior of Oils Containing α-Linolenic Acid.
    Dote S; Yamamoto Y; Hara S
    J Oleo Sci; 2016; 65(3):193-9. PubMed ID: 26935948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Model for human milk fat substitute evaluation based on triacylglycerol composition profile.
    Zou XQ; Huang JH; Jin QZ; Guo Z; Liu YF; Cheong LZ; Xu XB; Wang XG
    J Agric Food Chem; 2013 Jan; 61(1):167-75. PubMed ID: 23214496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human milk fat substitutes containing omega-3 fatty acids.
    Sahín N; Akoh CC; Karaalí A
    J Agric Food Chem; 2006 May; 54(10):3717-22. PubMed ID: 19127750
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of triacylglycerol structure and fatty acid profile of dietary fats on milk triacylglycerols in the rat. A two-generation study.
    Jensen MM; Sørensen H; Høy CE
    Lipids; 1996 Feb; 31(2):187-92. PubMed ID: 8835407
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipase-catalyzed acidolysis of tripalmitin with hazelnut oil fatty acids and stearic acid to produce human milk fat substitutes.
    Sahin N; Akoh CC; Karaali A
    J Agric Food Chem; 2005 Jul; 53(14):5779-83. PubMed ID: 15998148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic interesterification of tripalmitin with vegetable oil blends for formulation of caprine milk infant formula analogs.
    Maduko CO; Akoh CC; Park YW
    J Dairy Sci; 2007 Feb; 90(2):594-601. PubMed ID: 17235135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipase-catalyzed preparation of human milk fat substitutes from palm stearin in a solvent-free system.
    Zou XQ; Huang JH; Jin QZ; Liu YF; Song ZH; Wang XG
    J Agric Food Chem; 2011 Jun; 59(11):6055-63. PubMed ID: 21568327
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic Synthesis of Human Milk Fat Substitute - A Review on Technological Approaches.
    Hasibuan HA; Sitanggang AB; Andarwulan N; Hariyadi P
    Food Technol Biotechnol; 2021 Dec; 59(4):475-495. PubMed ID: 35136372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Oxidation behavior of triacylglycerol containing conjugated linolenic acids in sn-1(3) or sn-2 position.
    Yamamoto Y; Imori Y; Hara S
    J Oleo Sci; 2014; 63(1):31-7. PubMed ID: 24371198
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic production of infant milk fat analogs containing palmitic acid: optimization of reactions by response surface methodology.
    Maduko CO; Akoh CC; Park YW
    J Dairy Sci; 2007 May; 90(5):2147-54. PubMed ID: 17430912
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The triacylglycerol structure and composition of a human milk fat substitute affect the absorption of fatty acids and calcium, lipid metabolism and bile acid metabolism in newly-weaned Sprague-Dawley rats.
    Zhu L; Fang S; Liu W; Zhang H; Zhang Y; Xie Z; Yang P; Wan J; Gao B; Lucy Yu L
    Food Funct; 2023 Aug; 14(16):7574-7585. PubMed ID: 37526948
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison and enrichment of sn-2 palmitoyl triacylglycerols (OPO/OPL) in fish oil for its potential application as human milk fat substitutes.
    Liu D; Cui J; Zhou R; He C; Cao J; Li C
    Food Res Int; 2023 Jul; 169():112836. PubMed ID: 37254410
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Streamlined enzymatic synthesis of human milk fat substitutes.
    Xu Q; Wang S; Zou Q; Chen W; Lan D; Wang Y
    Food Chem; 2024 Jun; 443():138476. PubMed ID: 38306908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.