These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 32641755)

  • 1. Self-sustained oscillations and global climate changes.
    Arnaut LG; Ibáñez S
    Sci Rep; 2020 Jul; 10(1):11200. PubMed ID: 32641755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-latitude influence on the eastern equatorial Pacific climate in the early Pleistocene epoch.
    Liu Z; Herbert TD
    Nature; 2004 Feb; 427(6976):720-3. PubMed ID: 14973481
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Early onset and tropical forcing of 100,000-year Pleistocene glacial cycles.
    Rutherford S; D'Hondt S
    Nature; 2000 Nov; 408(6808):72-5. PubMed ID: 11081508
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Obliquity pacing of the late Pleistocene glacial terminations.
    Huybers P; Wunsch C
    Nature; 2005 Mar; 434(7032):491-4. PubMed ID: 15791252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The relationship between volcanism and global climate changes in the Tropical Western Pacific over the mid-Pleistocene transition: Evidence from mercury concentration and isotopic composition.
    Wang Y; Pei W; Yang J; Fan Y; Zhang R; Li T; Russell J; Zhang F; Yu X; Hu J; Song Y; Liu Z; Guan M; Han Q
    Sci Total Environ; 2022 Jun; 823():153482. PubMed ID: 35122862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Decadal-centennial-scale solar-linked climate variations and millennial-scale internal oscillations during the Early Cretaceous.
    Hasegawa H; Katsuta N; Muraki Y; Heimhofer U; Ichinnorov N; Asahi H; Ando H; Yamamoto K; Murayama M; Ohta T; Yamamoto M; Ikeda M; Ishikawa K; Kuma R; Hasegawa T; Hasebe N; Nishimoto S; Yamaguchi K; Abe F; Tada R; Nakagawa T
    Sci Rep; 2022 Dec; 12(1):21894. PubMed ID: 36536054
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian Data Analysis for Revealing Causes of the Middle Pleistocene Transition.
    Mukhin D; Gavrilov A; Loskutov E; Kurths J; Feigin A
    Sci Rep; 2019 May; 9(1):7328. PubMed ID: 31086256
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Mid-Pleistocene Transition: a delayed response to an increasing positive feedback?
    Shackleton JD; Follows MJ; Thomas PJ; Omta AW
    Clim Dyn; 2023; 60(11-12):4083-4098. PubMed ID: 37292246
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Atlantic overturning responses to Late Pleistocene climate forcings.
    Lisiecki LE; Raymo ME; Curry WB
    Nature; 2008 Nov; 456(7218):85-8. PubMed ID: 18987740
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transient nature of late Pleistocene climate variability.
    Crowley TJ; Hyde WT
    Nature; 2008 Nov; 456(7219):226-30. PubMed ID: 19005552
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A long marine history of carbon cycle modulation by orbital-climatic changes.
    Herbert TD
    Proc Natl Acad Sci U S A; 1997 Aug; 94(16):8362-9. PubMed ID: 11607746
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidences of precession and obliquity orbital forcing in oxygen-18 isotope composition of Montalbano Jonico section (Basilicata, southern Italy).
    Brilli M; Lerche L; Ciaranfi N; Turi B
    Appl Radiat Isot; 2000 Apr; 52(4):957-64. PubMed ID: 10800735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early Pleistocene obliquity-scale pCO
    Dyez KA; Hönisch B; Schmidt GA
    Paleoceanogr Paleoclimatol; 2018 Nov; 33(11):1270-1291. PubMed ID: 32715282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Millennial-scale variability of the Antarctic ice sheet during the early Miocene.
    Sullivan NB; Meyers SR; Levy RH; McKay RM; Golledge NR; Cortese G
    Proc Natl Acad Sci U S A; 2023 Sep; 120(39):e2304152120. PubMed ID: 37722047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CO
    Barral A; Gomez B; Fourel F; Daviero-Gomez V; Lécuyer C
    Sci Rep; 2017 Aug; 7(1):8310. PubMed ID: 28835644
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 100- kyr cyclicity in volcanic ash emplacement: evidence from a 1.1 Myr tephra record from the NW Pacific.
    Schindlbeck JC; Jegen M; Freundt A; Kutterolf S; Straub SM; Mleneck-Vautravers MJ; McManus JF
    Sci Rep; 2018 Mar; 8(1):4440. PubMed ID: 29535401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mid-Pleistocene transition in glacial cycles explained by declining CO
    Willeit M; Ganopolski A; Calov R; Brovkin V
    Sci Adv; 2019 Apr; 5(4):eaav7337. PubMed ID: 30949580
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formation of most of our coal brought Earth close to global glaciation.
    Feulner G
    Proc Natl Acad Sci U S A; 2017 Oct; 114(43):11333-11337. PubMed ID: 29073052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pacing of Paleozoic macroevolutionary rates by Milankovitch grand cycles.
    Crampton JS; Meyers SR; Cooper RA; Sadler PM; Foote M; Harte D
    Proc Natl Acad Sci U S A; 2018 May; 115(22):5686-5691. PubMed ID: 29760070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Orbital forcing of ice sheets during snowball Earth.
    Mitchell RN; Gernon TM; Cox GM; Nordsvan AR; Kirscher U; Xuan C; Liu Y; Liu X; He X
    Nat Commun; 2021 Jul; 12(1):4187. PubMed ID: 34234152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.