These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 32642056)

  • 1. On the use of models in understanding the rise of complex life.
    Lenton TM
    Interface Focus; 2020 Aug; 10(4):20200018. PubMed ID: 32642056
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proterozoic oxygen rise linked to shifting balance between seafloor and terrestrial weathering.
    Mills B; Lenton TM; Watson AJ
    Proc Natl Acad Sci U S A; 2014 Jun; 111(25):9073-8. PubMed ID: 24927553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of marine eukaryote evolution on phosphorus, carbon and oxygen cycling across the Proterozoic-Phanerozoic transition.
    Lenton TM; Daines SJ
    Emerg Top Life Sci; 2018 Sep; 2(2):267-278. PubMed ID: 32412617
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large Mass-Independent Oxygen Isotope Fractionations in Mid-Proterozoic Sediments: Evidence for a Low-Oxygen Atmosphere?
    Planavsky NJ; Reinhard CT; Isson TT; Ozaki K; Crockford PW
    Astrobiology; 2020 May; 20(5):628-636. PubMed ID: 32228301
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of iron and oxygen biogeochemical cycles during the Precambrian.
    Watanabe Y; Tajika E; Ozaki K
    Geobiology; 2023 Nov; 21(6):689-707. PubMed ID: 37622474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The History of Ocean Oxygenation.
    Reinhard CT; Planavsky NJ
    Ann Rev Mar Sci; 2022 Jan; 14():331-353. PubMed ID: 34416124
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A sluggish mid-Proterozoic biosphere and its effect on Earth's redox balance.
    Ozaki K; Reinhard CT; Tajika E
    Geobiology; 2019 Jan; 17(1):3-11. PubMed ID: 30281196
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Triple oxygen isotope constraints on atmospheric O
    Liu P; Liu J; Ji A; Reinhard CT; Planavsky NJ; Babikov D; Najjar RG; Kasting JF
    Proc Natl Acad Sci U S A; 2021 Dec; 118(51):. PubMed ID: 34911756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biogeochemical Transformations in the History of the Ocean.
    Lenton TM; Daines SJ
    Ann Rev Mar Sci; 2017 Jan; 9():31-58. PubMed ID: 27575740
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulating long-term carbon nitrogen and phosphorus biogeochemical cycling in agricultural environments.
    Janes-Bassett V; Davies J; Rowe EC; Tipping E
    Sci Total Environ; 2020 Apr; 714():136599. PubMed ID: 31982737
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Earth history. Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals.
    Planavsky NJ; Reinhard CT; Wang X; Thomson D; McGoldrick P; Rainbird RH; Johnson T; Fischer WW; Lyons TW
    Science; 2014 Oct; 346(6209):635-8. PubMed ID: 25359975
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A persistently low level of atmospheric oxygen in Earth's middle age.
    Liu XM; Kah LC; Knoll AH; Cui H; Wang C; Bekker A; Hazen RM
    Nat Commun; 2021 Jan; 12(1):351. PubMed ID: 33441548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial, Phytoplankton, and Viral Distributions and Their Biogeochemical Contexts in Meromictic Lake Cadagno Offer Insights into the Proterozoic Ocean Microbial Loop.
    Saini JS; Hassler C; Cable R; Fourquez M; Danza F; Roman S; Tonolla M; Storelli N; Jacquet S; Zdobnov EM; Duhaime MB
    mBio; 2022 Aug; 13(4):e0005222. PubMed ID: 35726916
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proterozoic ocean redox and biogeochemical stasis.
    Reinhard CT; Planavsky NJ; Robbins LJ; Partin CA; Gill BC; Lalonde SV; Bekker A; Konhauser KO; Lyons TW
    Proc Natl Acad Sci U S A; 2013 Apr; 110(14):5357-62. PubMed ID: 23515332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A theory of atmospheric oxygen.
    Laakso TA; Schrag DP
    Geobiology; 2017 May; 15(3):366-384. PubMed ID: 28378894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tracing the stepwise oxygenation of the Proterozoic ocean.
    Scott C; Lyons TW; Bekker A; Shen Y; Poulton SW; Chu X; Anbar AD
    Nature; 2008 Mar; 452(7186):456-9. PubMed ID: 18368114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial Diversity and Sulfur Cycling in an Early Earth Analogue: From Ancient Novelty to Modern Commonality.
    Hahn CR; Farag IF; Murphy CL; Podar M; Elshahed MS; Youssef NH
    mBio; 2022 Apr; 13(2):e0001622. PubMed ID: 35258328
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neoproterozoic syn-glacial carbonate precipitation and implications for a snowball Earth.
    Hood AVS; Penman DE; Lechte MA; Wallace MW; Giddings JA; Planavsky NJ
    Geobiology; 2022 Mar; 20(2):175-193. PubMed ID: 34528380
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global biogeochemical changes at both ends of the proterozoic: insights from phosphorites.
    Papineau D
    Astrobiology; 2010 Mar; 10(2):165-81. PubMed ID: 20105035
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.