These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 32642279)

  • 1. T Cell Metabolism in Cancer Immunotherapy.
    Aksoylar HI; Tijaro-Ovalle NM; Boussiotis VA; Patsoukis N
    Immunometabolism; 2020; 2(3):. PubMed ID: 32642279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dysfunctional T cell metabolism in the tumor microenvironment.
    Beckermann KE; Dudzinski SO; Rathmell JC
    Cytokine Growth Factor Rev; 2017 Jun; 35():7-14. PubMed ID: 28456467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic Regulation of T cell Activity: Implications for Metabolic-Based T-cell Therapies for Cancer.
    Abdesheikhi J; Sedghy F; Mahmoodi M; Fallah H; Ranjkesh M
    Iran Biomed J; 2023 Jan; 27(1):1-14. PubMed ID: 36624636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Future perspectives in melanoma research : Meeting report from the "Melanoma Bridge". Napoli, December 1st-4th 2015.
    Ascierto PA; Agarwala S; Botti G; Cesano A; Ciliberto G; Davies MA; Demaria S; Dummer R; Eggermont AM; Ferrone S; Fu YX; Gajewski TF; Garbe C; Huber V; Khleif S; Krauthammer M; Lo RS; Masucci G; Palmieri G; Postow M; Puzanov I; Silk A; Spranger S; Stroncek DF; Tarhini A; Taube JM; Testori A; Wang E; Wargo JA; Yee C; Zarour H; Zitvogel L; Fox BA; Mozzillo N; Marincola FM; Thurin M
    J Transl Med; 2016 Nov; 14(1):313. PubMed ID: 27846884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prospects for personalized combination immunotherapy for solid tumors based on adoptive cell therapies and immune checkpoint blockade therapies.
    Kato D; Yaguchi T; Iwata T; Morii K; Nakagawa T; Nishimura R; Kawakami Y
    Nihon Rinsho Meneki Gakkai Kaishi; 2017; 40(1):68-77. PubMed ID: 28539557
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting Tumor Metabolism: A New Challenge to Improve Immunotherapy.
    Kouidhi S; Ben Ayed F; Benammar Elgaaied A
    Front Immunol; 2018; 9():353. PubMed ID: 29527212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeting T Cell Metabolism for Improvement of Cancer Immunotherapy.
    Le Bourgeois T; Strauss L; Aksoylar HI; Daneshmandi S; Seth P; Patsoukis N; Boussiotis VA
    Front Oncol; 2018; 8():237. PubMed ID: 30123774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Targeting the tumor microenvironment and T cell metabolism for effective cancer immunotherapy.
    Hope HC; Salmond RJ
    Eur J Immunol; 2019 Aug; 49(8):1147-1152. PubMed ID: 31270810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumor cell oxidative metabolism as a barrier to PD-1 blockade immunotherapy in melanoma.
    Najjar YG; Menk AV; Sander C; Rao U; Karunamurthy A; Bhatia R; Zhai S; Kirkwood JM; Delgoffe GM
    JCI Insight; 2019 Mar; 4(5):. PubMed ID: 30721155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic Regulation of T Cell Longevity and Function in Tumor Immunotherapy.
    Kishton RJ; Sukumar M; Restifo NP
    Cell Metab; 2017 Jul; 26(1):94-109. PubMed ID: 28683298
    [TBL] [Abstract][Full Text] [Related]  

  • 11. TLR8-Mediated Metabolic Control of Human Treg Function: A Mechanistic Target for Cancer Immunotherapy.
    Li L; Liu X; Sanders KL; Edwards JL; Ye J; Si F; Gao A; Huang L; Hsueh EC; Ford DA; Hoft DF; Peng G
    Cell Metab; 2019 Jan; 29(1):103-123.e5. PubMed ID: 30344014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allogeneic GM-CSF-secreting tumor cell immunotherapies generate potent anti-tumor responses comparable to autologous tumor cell immunotherapies.
    Li B; Simmons A; Du T; Lin C; Moskalenko M; Gonzalez-Edick M; VanRoey M; Jooss K
    Clin Immunol; 2009 Nov; 133(2):184-97. PubMed ID: 19664962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mitochondria-Targeting Immunogenic Cell Death Inducer Improves the Adoptive T-Cell Therapy Against Solid Tumor.
    Jiang Q; Zhang C; Wang H; Peng T; Zhang L; Wang Y; Han W; Shi C
    Front Oncol; 2019; 9():1196. PubMed ID: 31781498
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Cancer Immunoediting in the Development of Cancer Immunotherapy].
    Ariyasu R; Nishikawa H
    Gan To Kagaku Ryoho; 2019 Mar; 46(3):407-411. PubMed ID: 30914573
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immunotherapy and tumor microenvironment.
    Tang H; Qiao J; Fu YX
    Cancer Lett; 2016 Jan; 370(1):85-90. PubMed ID: 26477683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Survival of the fittest: Cancer challenges T cell metabolism.
    Franchina DG; He F; Brenner D
    Cancer Lett; 2018 Jan; 412():216-223. PubMed ID: 29074426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NY-ESO-1 Based Immunotherapy of Cancer: Current Perspectives.
    Thomas R; Al-Khadairi G; Roelands J; Hendrickx W; Dermime S; Bedognetti D; Decock J
    Front Immunol; 2018; 9():947. PubMed ID: 29770138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supercharging adoptive T cell therapy to overcome solid tumor-induced immunosuppression.
    Mardiana S; Solomon BJ; Darcy PK; Beavis PA
    Sci Transl Med; 2019 Jun; 11(495):. PubMed ID: 31167925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Immunometabolism: A new target for improving cancer immunotherapy.
    Guo C; Chen S; Liu W; Ma Y; Li J; Fisher PB; Fang X; Wang XY
    Adv Cancer Res; 2019; 143():195-253. PubMed ID: 31202359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metastatic melanoma and immunotherapy.
    Herzberg B; Fisher DE
    Clin Immunol; 2016 Nov; 172():105-110. PubMed ID: 27430520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.