These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 32642279)

  • 21. Current status of chimeric antigen receptor engineered T cell-based and immune checkpoint blockade-based cancer immunotherapies.
    Hegde UP; Mukherji B
    Cancer Immunol Immunother; 2017 Sep; 66(9):1113-1121. PubMed ID: 28497159
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of Immunotherapy in Targeting the Bone Marrow Microenvironment in Multiple Myeloma: An Evolving Therapeutic Strategy.
    Chung C
    Pharmacotherapy; 2017 Jan; 37(1):129-143. PubMed ID: 27870103
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Targeting iNOS to increase efficacy of immunotherapies.
    Ekmekcioglu S; Grimm EA; Roszik J
    Hum Vaccin Immunother; 2017 May; 13(5):1105-1108. PubMed ID: 28121247
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Immune suppressive mechanisms in the tumor microenvironment.
    Munn DH; Bronte V
    Curr Opin Immunol; 2016 Apr; 39():1-6. PubMed ID: 26609943
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tumor Cell-Intrinsic Immunometabolism and Precision Nutrition in Cancer Immunotherapy.
    Cuyàs E; Verdura S; Martin-Castillo B; Alarcón T; Lupu R; Bosch-Barrera J; Menendez JA
    Cancers (Basel); 2020 Jul; 12(7):. PubMed ID: 32630618
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Next Hurdle in Cancer Immunotherapy: Overcoming the Non-T-Cell-Inflamed Tumor Microenvironment.
    Gajewski TF
    Semin Oncol; 2015 Aug; 42(4):663-71. PubMed ID: 26320069
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Reprogramming the Tumor Microenvironment to Improve Immunotherapy: Emerging Strategies and Combination Therapies.
    Datta M; Coussens LM; Nishikawa H; Hodi FS; Jain RK
    Am Soc Clin Oncol Educ Book; 2019 Jan; 39():165-174. PubMed ID: 31099649
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Targeting tumor-associated acidity in cancer immunotherapy.
    Lacroix R; Rozeman EA; Kreutz M; Renner K; Blank CU
    Cancer Immunol Immunother; 2018 Sep; 67(9):1331-1348. PubMed ID: 29974196
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Targeting T cell immunometabolism for cancer immunotherapy; understanding the impact of the tumor microenvironment.
    Mockler MB; Conroy MJ; Lysaght J
    Front Oncol; 2014; 4():107. PubMed ID: 24904823
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Adoptive T-Cell Therapy for Cancer.
    Yang JC; Rosenberg SA
    Adv Immunol; 2016; 130():279-94. PubMed ID: 26923004
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimizing Tumor Microenvironment for Cancer Immunotherapy: β-Glucan-Based Nanoparticles.
    Zhang M; Kim JA; Huang AY
    Front Immunol; 2018; 9():341. PubMed ID: 29535722
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Immunotherapy in ovarian cancer.
    Odunsi K
    Ann Oncol; 2017 Nov; 28(suppl_8):viii1-viii7. PubMed ID: 29232467
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Altered cancer metabolism in mechanisms of immunotherapy resistance.
    Ramapriyan R; Caetano MS; Barsoumian HB; Mafra ACP; Zambalde EP; Menon H; Tsouko E; Welsh JW; Cortez MA
    Pharmacol Ther; 2019 Mar; 195():162-171. PubMed ID: 30439456
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Immunity, Hypoxia, and Metabolism-the Ménage à Trois of Cancer: Implications for Immunotherapy.
    Riera-Domingo C; Audigé A; Granja S; Cheng WC; Ho PC; Baltazar F; Stockmann C; Mazzone M
    Physiol Rev; 2020 Jan; 100(1):1-102. PubMed ID: 31414610
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From a Patient Advocate's Perspective: Does Cancer Immunotherapy Represent a Paradigm Shift?
    Madden DL
    Curr Oncol Rep; 2018 Feb; 20(1):8. PubMed ID: 29411148
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clinically feasible approaches to potentiating cancer cell-based immunotherapies.
    Seledtsov VI; Goncharov AG; Seledtsova GV
    Hum Vaccin Immunother; 2015; 11(4):851-69. PubMed ID: 25933181
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Immunotherapy: enhancing the efficacy of this promising therapeutic in multiple cancers.
    Inthagard J; Edwards J; Roseweir AK
    Clin Sci (Lond); 2019 Jan; 133(2):181-193. PubMed ID: 30659159
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Harnessing the Immune System Against Leukemia: Monoclonal Antibodies and Checkpoint Strategies for AML.
    Masarova L; Kantarjian H; Garcia-Mannero G; Ravandi F; Sharma P; Daver N
    Adv Exp Med Biol; 2017; 995():73-95. PubMed ID: 28321813
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Current and Future Applications of Novel Immunotherapies in Urological Oncology: A Critical Review of the Literature.
    Özdemir BC; Siefker-Radtke AO; Campbell MT; Subudhi SK
    Eur Urol Focus; 2018 Apr; 4(3):442-454. PubMed ID: 29056275
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Immunotherapy: Beyond Anti-PD-1 and Anti-PD-L1 Therapies.
    Antonia SJ; Vansteenkiste JF; Moon E
    Am Soc Clin Oncol Educ Book; 2016; 35():e450-8. PubMed ID: 27249753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.