BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 32642749)

  • 21. Biomaterials in co-culture systems: towards optimizing tissue integration and cell signaling within scaffolds.
    Battiston KG; Cheung JW; Jain D; Santerre JP
    Biomaterials; 2014 May; 35(15):4465-76. PubMed ID: 24602569
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Implant surfaces and interface processes.
    Kasemo B; Gold J
    Adv Dent Res; 1999 Jun; 13():8-20. PubMed ID: 11276751
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Development of novel three-dimensional scaffolds based on bacterial nanocellulose for tissue engineering and regenerative medicine: Effect of processing methods, pore size, and surface area.
    Osorio M; Fernández-Morales P; Gañán P; Zuluaga R; Kerguelen H; Ortiz I; Castro C
    J Biomed Mater Res A; 2019 Feb; 107(2):348-359. PubMed ID: 30421501
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Four-Dimensional Printing Hierarchy Scaffolds with Highly Biocompatible Smart Polymers for Tissue Engineering Applications.
    Miao S; Zhu W; Castro NJ; Leng J; Zhang LG
    Tissue Eng Part C Methods; 2016 Oct; 22(10):952-963. PubMed ID: 28195832
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-dimensional graphene foam as a conductive scaffold for cardiac tissue engineering.
    Bahrami S; Baheiraei N; Mohseni M; Razavi M; Ghaderi A; Azizi B; Rabiee N; Karimi M
    J Biomater Appl; 2019 Jul; 34(1):74-85. PubMed ID: 30961432
    [No Abstract]   [Full Text] [Related]  

  • 26. Evaluating 3D-printed biomaterials as scaffolds for vascularized bone tissue engineering.
    Wang MO; Vorwald CE; Dreher ML; Mott EJ; Cheng MH; Cinar A; Mehdizadeh H; Somo S; Dean D; Brey EM; Fisher JP
    Adv Mater; 2015 Jan; 27(1):138-44. PubMed ID: 25387454
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Surface modification and chemical surface analysis of biomaterials.
    Kingshott P; Andersson G; McArthur SL; Griesser HJ
    Curr Opin Chem Biol; 2011 Oct; 15(5):667-76. PubMed ID: 21831695
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 3D bioprinting of hydrogel-based biomimetic microenvironments.
    Luo Y; Wei X; Huang P
    J Biomed Mater Res B Appl Biomater; 2019 Jul; 107(5):1695-1705. PubMed ID: 30508322
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D fiber deposited polymeric scaffolds for external auditory canal wall.
    Mota C; Milazzo M; Panetta D; Trombi L; Gramigna V; Salvadori PA; Giannotti S; Bruschini L; Stefanini C; Moroni L; Berrettini S; Danti S
    J Mater Sci Mater Med; 2018 May; 29(5):63. PubMed ID: 29736776
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Surface perspectives in the biomedical applications of poly(alpha-hydroxy acid)s and their associated copolymers.
    Lee JW; Gardella JA
    Anal Bioanal Chem; 2002 Aug; 373(7):526-37. PubMed ID: 12185564
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Current approaches to electrospun nanofibers for tissue engineering.
    Rim NG; Shin CS; Shin H
    Biomed Mater; 2013 Feb; 8(1):014102. PubMed ID: 23472258
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Scaffolding polymeric biomaterials: Are naturally occurring biological macromolecules more appropriate for tissue engineering?
    Abbasian M; Massoumi B; Mohammad-Rezaei R; Samadian H; Jaymand M
    Int J Biol Macromol; 2019 Aug; 134():673-694. PubMed ID: 31054302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Update on the main use of biomaterials and techniques associated with tissue engineering.
    Steffens D; Braghirolli DI; Maurmann N; Pranke P
    Drug Discov Today; 2018 Aug; 23(8):1474-1488. PubMed ID: 29608960
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Crosstalk between chitosan and cell signaling pathways.
    Farhadihosseinabadi B; Zarebkohan A; Eftekhary M; Heiat M; Moosazadeh Moghaddam M; Gholipourmalekabadi M
    Cell Mol Life Sci; 2019 Jul; 76(14):2697-2718. PubMed ID: 31030227
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Designing Biomaterials to Modulate Notch Signaling in Tissue Engineering and Regenerative Medicine.
    Zohorsky K; Mequanint K
    Tissue Eng Part B Rev; 2021 Oct; 27(5):383-410. PubMed ID: 33040694
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three dimensionally printed pearl powder/poly-caprolactone composite scaffolds for bone regeneration.
    Zhang X; Du X; Li D; Ao R; Yu B; Yu B
    J Biomater Sci Polym Ed; 2018 Oct; 29(14):1686-1700. PubMed ID: 29768120
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Vascularization in Craniofacial Bone Tissue Engineering.
    Tian T; Zhang T; Lin Y; Cai X
    J Dent Res; 2018 Aug; 97(9):969-976. PubMed ID: 29608865
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The summary of the most important cell-biomaterial interactions that need to be considered during in vitro biocompatibility testing of bone scaffolds for tissue engineering applications.
    Przekora A
    Mater Sci Eng C Mater Biol Appl; 2019 Apr; 97():1036-1051. PubMed ID: 30678895
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A novel 3D-printed silk fibroin-based scaffold facilitates tracheal epithelium proliferation in vitro.
    Zhong N; Dong T; Chen Z; Guo Y; Shao Z; Zhao X
    J Biomater Appl; 2019 Jul; 34(1):3-11. PubMed ID: 31006317
    [No Abstract]   [Full Text] [Related]  

  • 40. On the nature of biomaterials.
    Williams DF
    Biomaterials; 2009 Oct; 30(30):5897-909. PubMed ID: 19651435
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.