These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 32642832)

  • 1. Active phase field crystal systems with inertial delay and underdamped dynamics.
    Arold D; Schmiedeberg M
    Eur Phys J E Soft Matter; 2020 Jul; 43(7):47. PubMed ID: 32642832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mean field approach of dynamical pattern formation in underdamped active matter with short-ranged alignment and distant anti-alignment interactions.
    Arold D; Schmiedeberg M
    J Phys Condens Matter; 2020 May; 32(31):. PubMed ID: 32396529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase separation and state oscillation of active inertial particles.
    Dai C; Bruss IR; Glotzer SC
    Soft Matter; 2020 Mar; 16(11):2847-2853. PubMed ID: 32104833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inertial effects of self-propelled particles: From active Brownian to active Langevin motion.
    Löwen H
    J Chem Phys; 2020 Jan; 152(4):040901. PubMed ID: 32007042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inertial and geometrical effects of self-propelled elliptical Brownian particles.
    Montana F; Camporeale C; Porporato A; Rondoni L
    Phys Rev E; 2023 May; 107(5-1):054607. PubMed ID: 37328983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Underdamped scaled Brownian motion: (non-)existence of the overdamped limit in anomalous diffusion.
    Bodrova AS; Chechkin AV; Cherstvy AG; Safdari H; Sokolov IM; Metzler R
    Sci Rep; 2016 Jul; 6():30520. PubMed ID: 27462008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inertial delay of self-propelled particles.
    Scholz C; Jahanshahi S; Ldov A; Löwen H
    Nat Commun; 2018 Dec; 9(1):5156. PubMed ID: 30514839
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of inertia on conformation and dynamics of tangentially driven active filaments.
    Fazelzadeh M; Irani E; Mokhtari Z; Jabbari-Farouji S
    Phys Rev E; 2023 Aug; 108(2-1):024606. PubMed ID: 37723735
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pressure of a gas of underdamped active dumbbells.
    Joyeux M; Bertin E
    Phys Rev E; 2016 Mar; 93(3):032605. PubMed ID: 27078412
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Emergence of Collective Motion in a Model of Interacting Brownian Particles.
    Dossetti V; Sevilla FJ
    Phys Rev Lett; 2015 Jul; 115(5):058301. PubMed ID: 26274444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of Inertia on the Steady-Shear Rheology of Disordered Solids.
    Nicolas A; Barrat JL; Rottler J
    Phys Rev Lett; 2016 Feb; 116(5):058303. PubMed ID: 26894739
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inertial self-propelled particles.
    Caprini L; Marini Bettolo Marconi U
    J Chem Phys; 2021 Jan; 154(2):024902. PubMed ID: 33445896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantifying non-Markovianity in underdamped versus overdamped environments and its effect on spectral lineshape.
    Green D; Humphries BS; Dijkstra AG; Jones GA
    J Chem Phys; 2019 Nov; 151(17):174112. PubMed ID: 31703500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Active Ornstein-Uhlenbeck model for self-propelled particles with inertia.
    Nguyen GHP; Wittmann R; Löwen H
    J Phys Condens Matter; 2021 Nov; 34(3):. PubMed ID: 34598179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamic uncertainty relation for underdamped Langevin systems driven by a velocity-dependent force.
    Lee JS; Park JM; Park H
    Phys Rev E; 2019 Dec; 100(6-1):062132. PubMed ID: 31962517
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of rotational inertia for collective phenomena in active matter.
    Caprini L; Gupta RK; Löwen H
    Phys Chem Chem Phys; 2022 Oct; 24(40):24910-24916. PubMed ID: 36200385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inertial particle under active fluctuations: Diffusion and work distributions.
    Goswami K
    Phys Rev E; 2022 Apr; 105(4-1):044123. PubMed ID: 35590542
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of inertia in the rheology of amorphous systems: A finite-element-based elastoplastic model.
    Karimi K; Barrat JL
    Phys Rev E; 2016 Feb; 93(2):022904. PubMed ID: 26986396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. From a microscopic inertial active matter model to the Schrödinger equation.
    Te Vrugt M; Frohoff-Hülsmann T; Heifetz E; Thiele U; Wittkowski R
    Nat Commun; 2023 Mar; 14(1):1302. PubMed ID: 36894573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oscillating modes of driven colloids in overdamped systems.
    Berner J; Müller B; Gomez-Solano JR; Krüger M; Bechinger C
    Nat Commun; 2018 Mar; 9(1):999. PubMed ID: 29519999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.