These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 3264284)

  • 1. Modulation of the amino acid control of hepatic protein degradation by caloric deprivation. Two modes of alanine co-regulation.
    Mortimore GE; Wert JJ; Adams CE
    J Biol Chem; 1988 Dec; 263(36):19545-51. PubMed ID: 3264284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Requirement for alanine in the amino acid control of deprivation-induced protein degradation in liver.
    Pösö AR; Mortimore GE
    Proc Natl Acad Sci U S A; 1984 Jul; 81(14):4270-4. PubMed ID: 6589593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The lysosomal pathway of intracellular proteolysis in liver: regulation by amino acids.
    Mortimore GE; Pösö AR
    Adv Enzyme Regul; 1986; 25():257-76. PubMed ID: 3492868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiphasic control of hepatic protein degradation by regulatory amino acids. General features and hormonal modulation.
    Mortimore GE; Pösö AR; Kadowaki M; Wert JJ
    J Biol Chem; 1987 Dec; 262(34):16322-7. PubMed ID: 3316218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism and regulation of protein degradation in liver.
    Mortimore GE; Pösö AR; Lardeux BR
    Diabetes Metab Rev; 1989 Feb; 5(1):49-70. PubMed ID: 2649336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amino acid control of proteolysis in perfused livers of synchronously fed rats. Mechanism and specificity of alanine co-regulation.
    Mortimore GE; Khurana KK; Miotto G
    J Biol Chem; 1991 Jan; 266(2):1021-8. PubMed ID: 1985931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amino acid and hormonal control of macromolecular turnover in perfused rat liver. Evidence for selective autophagy.
    Lardeux BR; Mortimore GE
    J Biol Chem; 1987 Oct; 262(30):14514-9. PubMed ID: 2444587
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiphasic control of proteolysis by leucine and alanine in the isolated rat hepatocyte.
    Venerando R; Miotto G; Kadowaki M; Siliprandi N; Mortimore GE
    Am J Physiol; 1994 Feb; 266(2 Pt 1):C455-61. PubMed ID: 8141260
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multifunctional control of amino acids of deprivation-induced proteolysis in liver. Role of leucine.
    Pösö AR; Wert JJ; Mortimore GE
    J Biol Chem; 1982 Oct; 257(20):12114-20. PubMed ID: 7118932
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intracellular protein catabolism and its control during nutrient deprivation and supply.
    Mortimore GE; Pösö AR
    Annu Rev Nutr; 1987; 7():539-64. PubMed ID: 3300746
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hormone effects on hepatic substrate preference in sepsis.
    Paidas CN; Clemens MG
    Shock; 1994 Feb; 1(2):94-100. PubMed ID: 7749935
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inter-organ relationships between glucose, lactate and amino acids in rats fed on high-carbohydrate or high-protein diets.
    Rémésey C; Demigné C; Aufrère J
    Biochem J; 1978 Feb; 170(2):321-9. PubMed ID: 637846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Key role of L-alanine in the control of hepatic protein synthesis.
    Pérez-Sala D; Parrilla R; Ayuso MS
    Biochem J; 1987 Jan; 241(2):491-8. PubMed ID: 3593204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A reexamination of the role of the cytosolic alanine aminotransferase in hepatic gluconeogenesis.
    Patel TB; Olson MS
    Arch Biochem Biophys; 1985 Aug; 240(2):705-11. PubMed ID: 3927842
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glucagon-induced autophagy and proteolysis in rat liver: mediation by selective deprivation of intracellular amino acids.
    Schworer CM; Mortimore GE
    Proc Natl Acad Sci U S A; 1979 Jul; 76(7):3169-73. PubMed ID: 290994
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potentiation of renoprival hypertension by alanine, pyruvate and lactate.
    MUIRHEAD EE; JONES F; STIRMAN JA
    Am J Physiol; 1957 Dec; 191(3):537-41. PubMed ID: 13487776
    [No Abstract]   [Full Text] [Related]  

  • 17. Combined effects of fasting and alanine on liver function recovery after cold ischemia.
    Arnault I; Bao YM; Dimicoli JL; Lemoine A; Sebagh M; Adam R
    Transpl Int; 2002 Mar; 15(2-3):89-95. PubMed ID: 11935165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ca2(+)-fatty acid interaction in the control of hepatic gluconeogenesis.
    González-Manchón C; Menaya J; Ayuso MS; Parrilla R
    Biochim Biophys Acta; 1990 Mar; 1051(3):215-20. PubMed ID: 2310772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parallel control of hepatic proteolysis by phenylalanine and phenylpyruvate through independent inhibitory sites at the plasma membrane.
    Kadowaki M; Pösö AR; Mortimore GE
    J Biol Chem; 1992 Nov; 267(31):22060-5. PubMed ID: 1429557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pathophysiology of metabolic acidosis: effect of low pH on the hepatic uptake of lactate, pyruvate and alanine.
    Sestoft L; Bartels PD; Folke M
    Clin Physiol; 1982 Feb; 2(1):51-8. PubMed ID: 7201908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.