BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 32643289)

  • 1. Modifying nutritional substrates induces macrovesicular lipid droplet accumulation and metabolic alterations in a cellular model of hepatic steatosis.
    Gunn PJ; Pramfalk C; Millar V; Cornfield T; Hutchinson M; Johnson EM; Nagarajan SR; Troncoso-Rey P; Mithen RF; Pinnick KE; Traka MH; Green CJ; Hodson L
    Physiol Rep; 2020 Jul; 8(13):e14482. PubMed ID: 32643289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hepatic lipid droplets: A balancing act between energy storage and metabolic dysfunction in NAFLD.
    Mashek DG
    Mol Metab; 2021 Aug; 50():101115. PubMed ID: 33186758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determining the temporal, dose, and composition effects of nutritional substrates in an in vitro model of intrahepatocellular triglyceride accumulation.
    Nagarajan SR; Cross E; Johnson E; Sanna F; Daniels LJ; Ray DW; Hodson L
    Physiol Rep; 2022 Oct; 10(20):e15463. PubMed ID: 36301719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomechanics of cultured hepatic cells during different steatogenic hits.
    Baldini F; Bartolozzi A; Ardito M; Voci A; Portincasa P; Vassalli M; Vergani L
    J Mech Behav Biomed Mater; 2019 Sep; 97():296-305. PubMed ID: 31151002
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decreased PEDF Promotes Hepatic Fatty Acid Uptake and Lipid Droplet Formation in the Pathogenesis of NAFLD.
    Huang KT; Chen KD; Hsu LW; Kung CP; Li SR; Chen CC; Chiu KW; Goto S; Chen CL
    Nutrients; 2020 Jan; 12(1):. PubMed ID: 31968655
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Propensity of the Human Liver to Form Large Lipid Droplets Is Associated with PNPLA3 Polymorphism, Reduced INSIG1 and NPC1L1 Expression and Increased Fibrogenetic Capacity.
    Ferri F; Carotti S; Carpino G; Mischitelli M; Cantafora A; Molinaro A; Argenziano ME; Parisse S; Corsi A; Riminucci M; Lai Q; Mennini G; Spadetta G; Pugliese F; Rossi M; Morini S; Gaudio E; Ginanni Corradini S
    Int J Mol Sci; 2021 Jun; 22(11):. PubMed ID: 34198853
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Models of non-Alcoholic Fatty Liver Disease and Potential Translational Value: the Effects of 3,5-L-diiodothyronine.
    Grasselli E; Canesi L; Portincasa P; Voci A; Vergani L; Demori I
    Ann Hepatol; 2017; 16(5):707-719. PubMed ID: 28809727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A unifying mathematical model of lipid droplet metabolism reveals key molecular players in the development of hepatic steatosis.
    Wallstab C; Eleftheriadou D; Schulz T; Damm G; Seehofer D; Borlak J; Holzhütter HG; Berndt N
    FEBS J; 2017 Oct; 284(19):3245-3261. PubMed ID: 28763157
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitofusin-2 induced by exercise modifies lipid droplet-mitochondria communication, promoting fatty acid oxidation in male mice with NAFLD.
    Bórquez JC; Díaz-Castro F; La Fuente FP; Espinoza K; Figueroa AM; Martínez-Ruíz I; Hernández V; López-Soldado I; Ventura R; Domingo JC; Bosch M; Fajardo A; Sebastián D; Espinosa A; Pol A; Zorzano A; Cortés V; Hernández-Alvarez MI; Troncoso R
    Metabolism; 2024 Mar; 152():155765. PubMed ID: 38142958
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genomics of human fatty liver disease reveal mechanistically linked lipid droplet-associated gene regulations in bland steatosis and nonalcoholic steatohepatitis.
    Sahini N; Borlak J
    Transl Res; 2016 Nov; 177():41-69. PubMed ID: 27376874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A nonalcoholic fatty liver disease model in human induced pluripotent stem cell-derived hepatocytes, created by endoplasmic reticulum stress-induced steatosis.
    Parafati M; Kirby RJ; Khorasanizadeh S; Rastinejad F; Malany S
    Dis Model Mech; 2018 Sep; 11(9):. PubMed ID: 30254132
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular imaging analysis of microvesicular and macrovesicular lipid droplets in non-alcoholic fatty liver disease by Raman microscopy.
    Minamikawa T; Ichimura-Shimizu M; Takanari H; Morimoto Y; Shiomi R; Tanioka H; Hase E; Yasui T; Tsuneyama K
    Sci Rep; 2020 Oct; 10(1):18548. PubMed ID: 33122711
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of lipid metabolism in a novel immortalized human hepatocyte cell line.
    Green CJ; Johnson D; Amin HD; Sivathondan P; Silva MA; Wang LM; Stevanato L; McNeil CA; Miljan EA; Sinden JD; Morten KJ; Hodson L
    Am J Physiol Endocrinol Metab; 2015 Sep; 309(6):E511-22. PubMed ID: 26126685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resveratrol Ameliorates Lipid Droplet Accumulation in Liver Through a SIRT1/ ATF6-Dependent Mechanism.
    Zhou R; Yi L; Ye X; Zeng X; Liu K; Qin Y; Zhang Q; Mi M
    Cell Physiol Biochem; 2018; 51(5):2397-2420. PubMed ID: 30537742
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perspectives on Mitochondria-ER and Mitochondria-Lipid Droplet Contact in Hepatocytes and Hepatic Lipid Metabolism.
    Ma X; Qian H; Chen A; Ni HM; Ding WX
    Cells; 2021 Sep; 10(9):. PubMed ID: 34571924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Compounds that modulate AMPK activity and hepatic steatosis impact the biosynthesis of microRNAs required to maintain lipid homeostasis in hepatocytes.
    Latorre J; Ortega FJ; Liñares-Pose L; Moreno-Navarrete JM; Lluch A; Comas F; Oliveras-Cañellas N; Ricart W; Höring M; Zhou Y; Liebisch G; Nidhina Haridas PA; Olkkonen VM; López M; Fernández-Real JM
    EBioMedicine; 2020 Mar; 53():102697. PubMed ID: 32143184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Knockdown of long non-coding RNA Gm10804 suppresses disorders of hepatic glucose and lipid metabolism in diabetes with non-alcoholic fatty liver disease.
    Li T; Huang X; Yue Z; Meng L; Hu Y
    Cell Biochem Funct; 2020 Oct; 38(7):839-846. PubMed ID: 32212193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatty Acids and Effects on In Vitro and In Vivo Models of Liver Steatosis.
    Vergani L
    Curr Med Chem; 2019; 26(19):3439-3456. PubMed ID: 28521680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compound K modulates fatty acid-induced lipid droplet formation and expression of proteins involved in lipid metabolism in hepatocytes.
    Kim MS; Lee KT; Iseli TJ; Hoy AJ; George J; Grewal T; Roufogalis BD
    Liver Int; 2013 Nov; 33(10):1583-93. PubMed ID: 23998390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chokeberry attenuates the expression of genes related to de novo lipogenesis in the hepatocytes of mice with nonalcoholic fatty liver disease.
    Park H; Liu Y; Kim HS; Shin JH
    Nutr Res; 2016 Jan; 36(1):57-64. PubMed ID: 26773781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.