BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 32643444)

  • 1. Biomedical applications of muscle-derived stem cells: from bench to bedside.
    Tamaki T
    Expert Opin Biol Ther; 2020 Nov; 20(11):1361-1371. PubMed ID: 32643444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle-derived stem cells: important players in peripheral nerve repair.
    Musavi L; Brandacher G; Hoke A; Darrach H; Lee WPA; Kumar A; Lopez J
    Expert Opin Ther Targets; 2018 Dec; 22(12):1009-1016. PubMed ID: 30347175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Efficacy of Schwann-Like Differentiated Muscle-Derived Stem Cells in Treating Rodent Upper Extremity Peripheral Nerve Injury.
    Xun H; Yesantharao P; Musavi L; Quan A; Xiang S; Alonso-Escalante JC; Wang H; Tammia M; Cetinkaya-Fisgin A; Lee WPA; Brandacher G; Kumar A; Lopez J
    Plast Reconstr Surg; 2021 Oct; 148(4):787-798. PubMed ID: 34550935
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stem cell therapies to treat muscular dystrophy: progress to date.
    Meregalli M; Farini A; Parolini D; Maciotta S; Torrente Y
    BioDrugs; 2010 Aug; 24(4):237-47. PubMed ID: 20623990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional recovery of damaged skeletal muscle through synchronized vasculogenesis, myogenesis, and neurogenesis by muscle-derived stem cells.
    Tamaki T; Uchiyama Y; Okada Y; Ishikawa T; Sato M; Akatsuka A; Asahara T
    Circulation; 2005 Nov; 112(18):2857-66. PubMed ID: 16246946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Long-Gap Peripheral Nerve Injury Therapy Using Human Skeletal Muscle-Derived Stem Cells (Sk-SCs): An Achievement of Significant Morphological, Numerical and Functional Recovery.
    Tamaki T; Hirata M; Nakajima N; Saito K; Hashimoto H; Soeda S; Uchiyama Y; Watanabe M
    PLoS One; 2016; 11(11):e0166639. PubMed ID: 27846318
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mural cells paint a new picture of muscle stem cells.
    Morgan J; Muntoni F
    Nat Cell Biol; 2007 Mar; 9(3):249-51. PubMed ID: 17330116
    [No Abstract]   [Full Text] [Related]  

  • 8. Identification of a putative pathway for the muscle homing of stem cells in a muscular dystrophy model.
    Torrente Y; Camirand G; Pisati F; Belicchi M; Rossi B; Colombo F; El Fahime M; Caron NJ; Issekutz AC; Constantin G; Tremblay JP; Bresolin N
    J Cell Biol; 2003 Aug; 162(3):511-20. PubMed ID: 12885758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grafted muscle-derived stem cells promote the therapeutic efficiency of epimysium conduits in mice with peripheral nerve gap injury.
    Xu Z; Chen Z; Feng W; Huang M; Yang X; Qi Z
    Artif Organs; 2020 May; 44(5):E214-E225. PubMed ID: 31792982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preferential and comprehensive reconstitution of severely damaged sciatic nerve using murine skeletal muscle-derived multipotent stem cells.
    Tamaki T; Hirata M; Soeda S; Nakajima N; Saito K; Nakazato K; Okada Y; Hashimoto H; Uchiyama Y; Mochida J
    PLoS One; 2014; 9(3):e91257. PubMed ID: 24614849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Cell therapy for Duchenne muscular dystrophy].
    Zhou C; Zhang C
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2006 Dec; 23(6):659-61. PubMed ID: 17160947
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of stem cells in muscular dystrophies.
    Meregalli M; Farini A; Colleoni F; Cassinelli L; Torrente Y
    Curr Gene Ther; 2012 Jun; 12(3):192-205. PubMed ID: 22463740
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in stem cell treatment for sciatic nerve injury.
    Sayad-Fathi S; Nasiri E; Zaminy A
    Expert Opin Biol Ther; 2019 Apr; 19(4):301-311. PubMed ID: 30700166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of injecting primary myoblasts versus putative muscle-derived stem cells on mass and force generation in mdx mice.
    Mueller GM; O'Day T; Watchko JF; Ontell M
    Hum Gene Ther; 2002 Jun; 13(9):1081-90. PubMed ID: 12067441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stem cell-based therapies for Duchenne muscular dystrophy.
    Sun C; Serra C; Lee G; Wagner KR
    Exp Neurol; 2020 Jan; 323():113086. PubMed ID: 31639376
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stem and progenitor cells in skeletal muscle development, maintenance, and therapy.
    PĂ©ault B; Rudnicki M; Torrente Y; Cossu G; Tremblay JP; Partridge T; Gussoni E; Kunkel LM; Huard J
    Mol Ther; 2007 May; 15(5):867-77. PubMed ID: 17387336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Clonal multipotency of skeletal muscle-derived stem cells between mesodermal and ectodermal lineage.
    Tamaki T; Okada Y; Uchiyama Y; Tono K; Masuda M; Wada M; Hoshi A; Ishikawa T; Akatsuka A
    Stem Cells; 2007 Sep; 25(9):2283-90. PubMed ID: 17588936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene therapy and tissue engineering based on muscle-derived stem cells.
    Deasy BM; Huard J
    Curr Opin Mol Ther; 2002 Aug; 4(4):382-9. PubMed ID: 12222876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synchronized reconstitution of muscle fibers, peripheral nerves and blood vessels by murine skeletal muscle-derived CD34(-)/45 (-) cells.
    Tamaki T; Okada Y; Uchiyama Y; Tono K; Masuda M; Wada M; Hoshi A; Akatsuka A
    Histochem Cell Biol; 2007 Oct; 128(4):349-60. PubMed ID: 17762938
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stem cells, blood vessels, and angiogenesis as major determinants for musculoskeletal tissue repair.
    Huard J
    J Orthop Res; 2019 Jun; 37(6):1212-1220. PubMed ID: 29786150
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.