These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 32643796)
21. Inkjet-Printed Electrodes on A4 Paper Substrates for Low-Cost, Disposable, and Flexible Asymmetric Supercapacitors. Sundriyal P; Bhattacharya S ACS Appl Mater Interfaces; 2017 Nov; 9(44):38507-38521. PubMed ID: 28991438 [TBL] [Abstract][Full Text] [Related]
22. Biomass-derived three-dimensional carbon framework for a flexible fibrous supercapacitor and its application as a wearable smart textile. Hsiao C; Lee C; Tai N RSC Adv; 2020 Feb; 10(12):6960-6972. PubMed ID: 35493907 [TBL] [Abstract][Full Text] [Related]
23. A nanoporous MXene film enables flexible supercapacitors with high energy storage. Fan Z; Wang Y; Xie Z; Xu X; Yuan Y; Cheng Z; Liu Y Nanoscale; 2018 May; 10(20):9642-9652. PubMed ID: 29756628 [TBL] [Abstract][Full Text] [Related]
24. Laser-Induced Interdigital Structured Graphene Electrodes Based Flexible Micro-Supercapacitor for Efficient Peak Energy Storage. Ray A; Roth J; Saruhan B Molecules; 2022 Jan; 27(1):. PubMed ID: 35011558 [TBL] [Abstract][Full Text] [Related]
25. All-Graphene Oxide Flexible Solid-State Supercapacitors with Enhanced Electrochemical Performance. Ogata C; Kurogi R; Awaya K; Hatakeyama K; Taniguchi T; Koinuma M; Matsumoto Y ACS Appl Mater Interfaces; 2017 Aug; 9(31):26151-26160. PubMed ID: 28715632 [TBL] [Abstract][Full Text] [Related]
26. Flexible Nb₄N Huang C; Yang Y; Fu J; Wu J; Song H; Zhang X; Gao B; Chu PK; Huo K J Nanosci Nanotechnol; 2018 Jan; 18(1):30-38. PubMed ID: 29768807 [TBL] [Abstract][Full Text] [Related]
27. Composite Assembling of Oxide-Based Optically Transparent Electrodes for High-Performance Asymmetric Supercapacitors. Sharma M; Adalati R; Kumar A; Mehta M; Chandra R ACS Appl Mater Interfaces; 2022 Jun; ():. PubMed ID: 35656926 [TBL] [Abstract][Full Text] [Related]
28. Facile Processing of Free-Standing Polyaniline/SWCNT Film as an Integrated Electrode for Flexible Supercapacitor Application. Liu F; Luo S; Liu D; Chen W; Huang Y; Dong L; Wang L ACS Appl Mater Interfaces; 2017 Oct; 9(39):33791-33801. PubMed ID: 28884579 [TBL] [Abstract][Full Text] [Related]
29. The Pine-Needle-Inspired Structure of Zinc Oxide Nanorods Grown on Electrospun Nanofibers for High-Performance Flexible Supercapacitors. Sami SK; Siddiqui S; Shrivastava S; Lee NE; Chung CH Small; 2017 Dec; 13(46):. PubMed ID: 29045044 [TBL] [Abstract][Full Text] [Related]
30. Self-Supporting GaN Nanowires/Graphite Paper: Novel High-Performance Flexible Supercapacitor Electrodes. Wang S; Sun C; Shao Y; Wu Y; Zhang L; Hao X Small; 2017 Feb; 13(8):. PubMed ID: 27982526 [TBL] [Abstract][Full Text] [Related]
31. EGaIn Fiber Enabled Highly Flexible Supercapacitors. Duan M; Ren Y; Sun X; Zhu X; Wang X; Sheng L; Liu J ACS Omega; 2021 Sep; 6(38):24444-24449. PubMed ID: 34604626 [TBL] [Abstract][Full Text] [Related]
32. Layered coating of ultraflexible graphene-based electrodes for high-performance in-plane quasi-solid-state micro-supercapacitors. Du J; Mu X; Zhao Y; Zhang Y; Zhang S; Huang B; Sheng Y; Xie Y; Zhang Z; Xie E Nanoscale; 2019 Aug; 11(30):14392-14399. PubMed ID: 31334526 [TBL] [Abstract][Full Text] [Related]
33. Fully Printed Ultraflexible Supercapacitor Supported by a Single-Textile Substrate. Zhang H; Qiao Y; Lu Z ACS Appl Mater Interfaces; 2016 Nov; 8(47):32317-32323. PubMed ID: 27933835 [TBL] [Abstract][Full Text] [Related]
34. CNT@SrTiO Cao Y; Li S; Zhong J; Cao Y; Qiu W ACS Omega; 2024 May; 9(20):22423-22435. PubMed ID: 38799353 [TBL] [Abstract][Full Text] [Related]
35. High Per formance and Flexible Supercapacitors based on Carbonized Bamboo Fibers for Wide Temperature Applications. Zequine C; Ranaweera CK; Wang Z; Singh S; Tripathi P; Srivastava ON; Gupta BK; Ramasamy K; Kahol PK; Dvornic PR; Gupta RK Sci Rep; 2016 Aug; 6():31704. PubMed ID: 27546225 [TBL] [Abstract][Full Text] [Related]
36. Transition metal sulfides grown on graphene fibers for wearable asymmetric supercapacitors with high volumetric capacitance and high energy density. Cai W; Lai T; Lai J; Xie H; Ouyang L; Ye J; Yu C Sci Rep; 2016 Jun; 6():26890. PubMed ID: 27248510 [TBL] [Abstract][Full Text] [Related]
37. In Situ Growth of the Ni Liu X; Wang J; Yang G ACS Appl Mater Interfaces; 2018 Jun; 10(24):20688-20695. PubMed ID: 29807419 [TBL] [Abstract][Full Text] [Related]
38. High performance flexible hybrid supercapacitors based on nickel hydroxide deposited on copper oxide supported by copper foam for a sunlight-powered rechargeable energy storage system. Li M; Addad A; Roussel P; Szunerits S; Boukherroub R J Colloid Interface Sci; 2020 Nov; 579():520-530. PubMed ID: 32623118 [TBL] [Abstract][Full Text] [Related]
39. Large Areal Mass, Mechanically Tough and Freestanding Electrode Based on Heteroatom-doped Carbon Nanofibers for Flexible Supercapacitors. Liu R; Ma L; Mei J; Huang S; Yang S; Li E; Yuan G Chemistry; 2017 Feb; 23(11):2610-2618. PubMed ID: 28000323 [TBL] [Abstract][Full Text] [Related]
40. Flexible Black-Phosphorus Nanoflake/Carbon Nanotube Composite Paper for High-Performance All-Solid-State Supercapacitors. Yang B; Hao C; Wen F; Wang B; Mu C; Xiang J; Li L; Xu B; Zhao Z; Liu Z; Tian Y ACS Appl Mater Interfaces; 2017 Dec; 9(51):44478-44484. PubMed ID: 29192760 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]