These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
147 related articles for article (PubMed ID: 32643796)
41. A flexible and conductive metallic paper-based current collector with energy storage capability in supercapacitor electrodes. Li Y; Wang Q; Wang Y; Bai M; Shao J; Ji H; Feng H; Zhang J; Ma X; Zhao W Dalton Trans; 2019 Jun; 48(22):7659-7665. PubMed ID: 31049511 [TBL] [Abstract][Full Text] [Related]
42. Ultrahigh Energy Storage Performance of Flexible BMT-Based Thin Film Capacitors. Bin C; Hou X; Xie Y; Zhang J; Yang H; Xu L; Wei H; Wang J Small; 2022 Jan; 18(4):e2106209. PubMed ID: 34841650 [TBL] [Abstract][Full Text] [Related]
43. Electrochemical activation of carbon cloth in aqueous inorganic salt solution for superior capacitive performance. Ye D; Yu Y; Tang J; Liu L; Wu Y Nanoscale; 2016 May; 8(19):10406-14. PubMed ID: 27141910 [TBL] [Abstract][Full Text] [Related]
44. Novel Quaternary Chalcogenide/Reduced Graphene Oxide-Based Asymmetric Supercapacitor with High Energy Density. Sarkar S; Howli P; Das B; Das NS; Samanta M; Das GC; Chattopadhyay KK ACS Appl Mater Interfaces; 2017 Jul; 9(27):22652-22664. PubMed ID: 28616963 [TBL] [Abstract][Full Text] [Related]
45. Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors. Cheng Y; Lu S; Zhang H; Varanasi CV; Liu J Nano Lett; 2012 Aug; 12(8):4206-11. PubMed ID: 22823066 [TBL] [Abstract][Full Text] [Related]
46. Jahn-Teller distortions boost the ultrahigh areal capacity and cycling robustness of holey NiMn-hydroxide nanosheets for flexible energy storage devices. Chen R; Xue J; Gao X; Yu C; Chen Q; Zhou J; Sun G; Huang W Nanoscale; 2020 Nov; 12(43):22075-22081. PubMed ID: 33140810 [TBL] [Abstract][Full Text] [Related]
47. A Conductive and Highly Deformable All-Pseudocapacitive Composite Paper as Supercapacitor Electrode with Improved Areal and Volumetric Capacitance. Zhou J; Yu J; Shi L; Wang Z; Liu H; Yang B; Li C; Zhu C; Xu J Small; 2018 Dec; 14(51):e1803786. PubMed ID: 30398691 [TBL] [Abstract][Full Text] [Related]
48. From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles. Huang Y; Hu H; Huang Y; Zhu M; Meng W; Liu C; Pei Z; Hao C; Wang Z; Zhi C ACS Nano; 2015 May; 9(5):4766-75. PubMed ID: 25842997 [TBL] [Abstract][Full Text] [Related]
50. Free-Standing Black Phosphorus Thin Films for Flexible Quasi-Solid-State Micro-Supercapacitors with High Volumetric Power and Energy Density. Yang J; Pan Z; Yu Q; Zhang Q; Ding X; Shi X; Qiu Y; Zhang K; Wang J; Zhang Y ACS Appl Mater Interfaces; 2019 Feb; 11(6):5938-5946. PubMed ID: 30648840 [TBL] [Abstract][Full Text] [Related]
51. A dynamic stretchable and self-healable supercapacitor with a CNT/graphene/PANI composite film. Liang X; Zhao L; Wang Q; Ma Y; Zhang D Nanoscale; 2018 Dec; 10(47):22329-22334. PubMed ID: 30468232 [TBL] [Abstract][Full Text] [Related]
52. Interlayer Hydrogen-Bonded Metal Porphyrin Frameworks/MXene Hybrid Film with High Capacitance for Flexible All-Solid-State Supercapacitors. Zhao W; Peng J; Wang W; Jin B; Chen T; Liu S; Zhao Q; Huang W Small; 2019 May; 15(18):e1901351. PubMed ID: 30957989 [TBL] [Abstract][Full Text] [Related]
53. Flexible Nitrogen Doped SiC Nanoarray for Ultrafast Capacitive Energy Storage. Chen Y; Zhang X; Xie Z ACS Nano; 2015 Aug; 9(8):8054-63. PubMed ID: 26259167 [TBL] [Abstract][Full Text] [Related]
54. A seamlessly integrated device of micro-supercapacitor and wireless charging with ultrahigh energy density and capacitance. Gao C; Huang J; Xiao Y; Zhang G; Dai C; Li Z; Zhao Y; Jiang L; Qu L Nat Commun; 2021 May; 12(1):2647. PubMed ID: 33976170 [TBL] [Abstract][Full Text] [Related]
55. Printable Fabrication of Nanocoral-Structured Electrodes for High-Performance Flexible and Planar Supercapacitor with Artistic Design. Lin Y; Gao Y; Fan Z Adv Mater; 2017 Nov; 29(43):. PubMed ID: 28980732 [TBL] [Abstract][Full Text] [Related]
56. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films. Xu Y; Lin Z; Huang X; Liu Y; Huang Y; Duan X ACS Nano; 2013 May; 7(5):4042-9. PubMed ID: 23550832 [TBL] [Abstract][Full Text] [Related]
57. High-performance MnO Xu L; Jia M; Li Y; Jin X; Zhang F Sci Rep; 2017 Oct; 7(1):12857. PubMed ID: 28993627 [TBL] [Abstract][Full Text] [Related]
58. Lanthanum Doping in Zinc Oxide for Highly Reliable Thin-Film Transistors on Flexible Substrates by Spray Pyrolysis. Bukke RN; Saha JK; Mude NN; Kim Y; Lee S; Jang J ACS Appl Mater Interfaces; 2020 Aug; 12(31):35164-35174. PubMed ID: 32657115 [TBL] [Abstract][Full Text] [Related]
59. Mesoporous NH Liu Y; Zhai X; Yang K; Wang F; Wei H; Zhang W; Ren F; Pang H Front Chem; 2019; 7():118. PubMed ID: 30931297 [TBL] [Abstract][Full Text] [Related]
60. Aluminum-Ion-Intercalation Supercapacitors with Ultrahigh Areal Capacitance and Highly Enhanced Cycling Stability: Power Supply for Flexible Electrochromic Devices. Li K; Shao Y; Liu S; Zhang Q; Wang H; Li Y; Kaner RB Small; 2017 May; 13(19):. PubMed ID: 28371336 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]