These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 32643873)

  • 1. A Reductive Supramolecular Hydrogel: A Platform for Facile Fabrication of Diverse Metal-Nanoparticle-Decorated Conductive Networks with Spatiotemporal Control.
    Wang P; He G; Ji J; Li J; Zhou K; Tian L; Feng K; Sun F; Li G
    Chempluschem; 2020 Aug; 85(8):1704-1709. PubMed ID: 32643873
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Supramolecular Reinforcement of Polymer-Nanoparticle Hydrogels for Modular Materials Design.
    Bovone G; Guzzi EA; Bernhard S; Weber T; Dranseikiene D; Tibbitt MW
    Adv Mater; 2022 Mar; 34(9):e2106941. PubMed ID: 34954875
    [TBL] [Abstract][Full Text] [Related]  

  • 3. From prevention to diagnosis and treatment: Biomedical applications of metal nanoparticle-hydrogel composites.
    Clasky AJ; Watchorn JD; Chen PZ; Gu FX
    Acta Biomater; 2021 Mar; 122():1-25. PubMed ID: 33352300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design Strategies of Stimuli-Responsive Supramolecular Hydrogels Relying on Structural Analyses and Cell-Mimicking Approaches.
    Shigemitsu H; Hamachi I
    Acc Chem Res; 2017 Apr; 50(4):740-750. PubMed ID: 28252940
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene oxide-based hydrogels to make metal nanoparticle-containing reduced graphene oxide-based functional hybrid hydrogels.
    Adhikari B; Biswas A; Banerjee A
    ACS Appl Mater Interfaces; 2012 Oct; 4(10):5472-82. PubMed ID: 22970805
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoparticle-Hydrogel Composites: Concept, Design, and Applications of These Promising, Multi-Functional Materials.
    Thoniyot P; Tan MJ; Karim AA; Young DJ; Loh XJ
    Adv Sci (Weinh); 2015 Feb; 2(1-2):1400010. PubMed ID: 27980900
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Strategies for Supramolecular Hydrogels and Their Applications.
    Sánchez-Fernández JA
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987146
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Polymer Structures in Catalysis by Transition Metal and Metal Oxide Nanoparticle Composites.
    Shifrina ZB; Matveeva VG; Bronstein LM
    Chem Rev; 2020 Jan; 120(2):1350-1396. PubMed ID: 31181907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supramolecular dendritic polymers: from synthesis to applications.
    Dong R; Zhou Y; Zhu X
    Acc Chem Res; 2014 Jul; 47(7):2006-16. PubMed ID: 24779892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conductive and Tough Hydrogels Based on Biopolymer Molecular Templates for Controlling in Situ Formation of Polypyrrole Nanorods.
    Gan D; Han L; Wang M; Xing W; Xu T; Zhang H; Wang K; Fang L; Lu X
    ACS Appl Mater Interfaces; 2018 Oct; 10(42):36218-36228. PubMed ID: 30251533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polymer thin films embedded with in situ grown metal nanoparticles.
    Ramesh GV; Porel S; Radhakrishnan TP
    Chem Soc Rev; 2009 Sep; 38(9):2646-56. PubMed ID: 19690744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Guanidinium-Based Polymerizable Surfactant as a Multifunctional Molecule for Controlled Synthesis of Nanostructured Materials with Tunable Morphologies.
    Ji J; Zhu W; Li J; Wang P; Liang Y; Zhang W; Yin X; Wu B; Li G
    ACS Appl Mater Interfaces; 2017 Jun; 9(22):19124-19134. PubMed ID: 28497680
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In Situ Assembly of Au Nanoclusters within Protein Hydrogel Networks.
    Wang L; Jiang X; Zhang M; Yang M; Liu YN
    Chem Asian J; 2017 Sep; 12(18):2374-2378. PubMed ID: 28758713
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling of silver nanoparticles structure by hydrogel networks.
    Murali Mohan Y; Vimala K; Thomas V; Varaprasad K; Sreedhar B; Bajpai SK; Mohana Raju K
    J Colloid Interface Sci; 2010 Feb; 342(1):73-82. PubMed ID: 19883919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stimuli-Responsive DNA-Based Hydrogels: From Basic Principles to Applications.
    Kahn JS; Hu Y; Willner I
    Acc Chem Res; 2017 Apr; 50(4):680-690. PubMed ID: 28248486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tough Bonding, On-Demand Debonding, and Facile Rebonding between Hydrogels and Diverse Metal Surfaces.
    Li W; Liu X; Deng Z; Chen Y; Yu Q; Tang W; Sun TL; Zhang YS; Yue K
    Adv Mater; 2019 Nov; 31(48):e1904732. PubMed ID: 31602727
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal Nanoparticle Carbon Gel Composites in Environmental Water Sensing Applications.
    Niu P; Gich M; Roig A; Fernández-Sánchez C
    Chem Rec; 2018 Jul; 18(7-8):749-758. PubMed ID: 29806230
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering responsive polymer building blocks with host-guest molecular recognition for functional applications.
    Hu J; Liu S
    Acc Chem Res; 2014 Jul; 47(7):2084-95. PubMed ID: 24742049
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid Hydrogel Electrolyte Based on Metal-Organic Supermolecular Self-Assembly and Polymer Chemical Cross-Linking for Rechargeable Aqueous Zn-MnO
    Hu Y; Shen P; Zeng N; Wang L; Yan D; Cui L; Yang K; Zhai C
    ACS Appl Mater Interfaces; 2020 Sep; 12(37):42285-42293. PubMed ID: 32838531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Self-Assembling Supramolecular Hybrid Hydrogel Beads.
    Piras CC; Slavik P; Smith DK
    Angew Chem Int Ed Engl; 2020 Jan; 59(2):853-859. PubMed ID: 31697017
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.