These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32643873)

  • 41. Cyclodextrin-based host-guest supramolecular nanoparticles for delivery: from design to applications.
    Hu QD; Tang GP; Chu PK
    Acc Chem Res; 2014 Jul; 47(7):2017-25. PubMed ID: 24873201
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Remote Spatiotemporal Control of a Magnetic and Electroconductive Hydrogel Network via Magnetic Fields for Soft Electronic Applications.
    Puiggalí-Jou A; Babeli I; Roa JJ; Zoppe JO; Garcia-Amorós J; Ginebra MP; Alemán C; García-Torres J
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42486-42501. PubMed ID: 34469100
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A Nanocomposite Hydrogel with Potent and Broad-Spectrum Antibacterial Activity.
    Dai T; Wang C; Wang Y; Xu W; Hu J; Cheng Y
    ACS Appl Mater Interfaces; 2018 May; 10(17):15163-15173. PubMed ID: 29648438
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nanoparticle-hydrogel superstructures for biomedical applications.
    Jiang Y; Krishnan N; Heo J; Fang RH; Zhang L
    J Control Release; 2020 Aug; 324():505-521. PubMed ID: 32464152
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Supramolecular polymers constructed from macrocycle-based host-guest molecular recognition motifs.
    Dong S; Zheng B; Wang F; Huang F
    Acc Chem Res; 2014 Jul; 47(7):1982-94. PubMed ID: 24684594
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Dopant-Enabled Supramolecular Approach for Controlled Synthesis of Nanostructured Conductive Polymer Hydrogels.
    Wang Y; Shi Y; Pan L; Ding Y; Zhao Y; Li Y; Shi Y; Yu G
    Nano Lett; 2015 Nov; 15(11):7736-41. PubMed ID: 26505784
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesis and temperature response analysis of magnetic-hydrogel nanocomposites.
    Frimpong RA; Fraser S; Hilt JZ
    J Biomed Mater Res A; 2007 Jan; 80(1):1-6. PubMed ID: 16941587
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Antimicrobial polymers with metal nanoparticles.
    Palza H
    Int J Mol Sci; 2015 Jan; 16(1):2099-116. PubMed ID: 25607734
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A Biocompatible Therapeutic Catheter-Deliverable Hydrogel for In Situ Tissue Engineering.
    Steele AN; Stapleton LM; Farry JM; Lucian HJ; Paulsen MJ; Eskandari A; Hironaka CE; Thakore AD; Wang H; Yu AC; Chan D; Appel EA; Woo YJ
    Adv Healthc Mater; 2019 Mar; 8(5):e1801147. PubMed ID: 30714355
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Facile synthesis of graphene/metal nanoparticle composites via self-catalysis reduction at room temperature.
    Zhuo Q; Ma Y; Gao J; Zhang P; Xia Y; Tian Y; Sun X; Zhong J; Sun X
    Inorg Chem; 2013 Mar; 52(6):3141-7. PubMed ID: 23451829
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Plasmonic nanocomposites: polymer-guided strategies for assembling metal nanoparticles.
    Gao B; Rozin MJ; Tao AR
    Nanoscale; 2013 Jul; 5(13):5677-91. PubMed ID: 23703218
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In Situ Synthesis of Antimicrobial Silver Nanoparticles within Antifouling Zwitterionic Hydrogels by Catecholic Redox Chemistry for Wound Healing Application.
    GhavamiNejad A; Park CH; Kim CS
    Biomacromolecules; 2016 Mar; 17(3):1213-23. PubMed ID: 26891456
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Utilization of smart hydrogel-metal composites as catalysis media.
    Sahiner N; Butun S; Ozay O; Dibek B
    J Colloid Interface Sci; 2012 May; 373(1):122-8. PubMed ID: 21937055
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Covalent tethering of photo-responsive superficial layers on hydrogel surfaces for photo-controlled release.
    Chen L; Yao X; Gu Z; Zheng K; Zhao C; Lei W; Rong Q; Lin L; Wang J; Jiang L; Liu M
    Chem Sci; 2017 Mar; 8(3):2010-2016. PubMed ID: 28451318
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Conductive Self-Healing Hybrid Gel Enabled by Metal-Ligand Supramolecule and Nanostructured Conductive Polymer.
    Shi Y; Wang M; Ma C; Wang Y; Li X; Yu G
    Nano Lett; 2015 Sep; 15(9):6276-81. PubMed ID: 26262553
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Novel Elastically Stretchable Metal-Organic Framework Laden Hydrogel with Pearl-Net Microstructure and Freezing Resistance through Post-Synthetic Polymerization.
    Xu J; Wu C; Qiu Y; Tang X; Zeng D
    Macromol Rapid Commun; 2020 Mar; 41(6):e1900573. PubMed ID: 32022971
    [TBL] [Abstract][Full Text] [Related]  

  • 57. In Situ Synthesis of Metal Nanoparticle Embedded Hybrid Soft Nanomaterials.
    Divya KP; Miroshnikov M; Dutta D; Vemula PK; Ajayan PM; John G
    Acc Chem Res; 2016 Sep; 49(9):1671-80. PubMed ID: 27552443
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Facile fabrication of moldable antibacterial carboxymethyl chitosan supramolecular hydrogels cross-linked by metal ions complexation.
    Wahid F; Wang HS; Zhong C; Chu LQ
    Carbohydr Polym; 2017 Jun; 165():455-461. PubMed ID: 28363572
    [TBL] [Abstract][Full Text] [Related]  

  • 59. 'Clickable' hydrogels for all: facile fabrication and functionalization.
    Beria L; Gevrek TN; Erdog A; Sanyal R; Pasini D; Sanyal A
    Biomater Sci; 2014 Jan; 2(1):67-75. PubMed ID: 32481808
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Highly stable, water-dispersible metal-nanoparticle-decorated polymer nanocapsules and their catalytic applications.
    Yun G; Hassan Z; Lee J; Kim J; Lee NS; Kim NH; Baek K; Hwang I; Park CG; Kim K
    Angew Chem Int Ed Engl; 2014 Jun; 53(25):6414-8. PubMed ID: 24842492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.