These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 32644269)

  • 21. Super-Resolution Imaging with Direct Laser Writing-Printed Microstructures.
    Du B; Zhang H; Xia J; Wu J; Ding H; Tong G
    J Phys Chem A; 2020 Sep; 124(35):7211-7216. PubMed ID: 32786979
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A facile multi-material direct laser writing strategy.
    Lamont AC; Restaino MA; Kim MJ; Sochol RD
    Lab Chip; 2019 Jul; 19(14):2340-2345. PubMed ID: 31209452
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication of Conductive 3D Gold-Containing Microstructures via Direct Laser Writing.
    Blasco E; Müller J; Müller P; Trouillet V; Schön M; Scherer T; Barner-Kowollik C; Wegener M
    Adv Mater; 2016 May; 28(18):3592-5. PubMed ID: 26953811
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Direct laser writing for micro-optical devices using a negative photoresist.
    Tsutsumi N; Hirota J; Kinashi K; Sakai W
    Opt Express; 2017 Dec; 25(25):31539-31551. PubMed ID: 29245828
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Universal concept for the implementation of a single cleavable unit at tunable position in functional poly(ethylene glycol)s.
    Dingels C; Müller SS; Steinbach T; Tonhauser C; Frey H
    Biomacromolecules; 2013 Feb; 14(2):448-59. PubMed ID: 23256621
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Photocurable poly(ethylene glycol) as a bioink for the inkjet 3D pharming of hydrophobic drugs.
    Acosta-Vélez GF; Zhu TZ; Linsley CS; Wu BM
    Int J Pharm; 2018 Jul; 546(1-2):145-153. PubMed ID: 29705105
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tailoring the Mechanical Properties of 3D Microstructures Using Visible Light Post-Manufacturing.
    Gernhardt M; Blasco E; Hippler M; Blinco J; Bastmeyer M; Wegener M; Frisch H; Barner-Kowollik C
    Adv Mater; 2019 Jul; 31(30):e1901269. PubMed ID: 31155785
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and on-demand gelation of multifunctional poly(ethylene glycol)-based polymers.
    Sokolovskaya E; Barner L; Bräse S; Lahann J
    Macromol Rapid Commun; 2014 Apr; 35(8):780-6. PubMed ID: 24522984
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modification and patterning of nanometer-thin poly(ethylene glycol) films by electron irradiation.
    Meyerbröker N; Zharnikov M
    ACS Appl Mater Interfaces; 2013 Jun; 5(11):5129-38. PubMed ID: 23639274
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exploiting Direct Laser Writing for Hydrogel Integration into Fragile Microelectromechanical Systems.
    Menges J; Klingel S; Oesterschulze E; Bart HJ
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31159238
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Simultaneous Dual Encoding of Three-Dimensional Structures by Light-Induced Modular Ligation.
    Claus TK; Richter B; Hahn V; Welle A; Kayser S; Wegener M; Bastmeyer M; Delaittre G; Barner-Kowollik C
    Angew Chem Int Ed Engl; 2016 Mar; 55(11):3817-22. PubMed ID: 26891070
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Two-Photon Direct Laser Writing of 3D Scaffolds through C, H-Insertion Crosslinking in a One-Component Material System.
    Song D; Husari A; Kotz-Helmer F; Tomakidi P; Rapp BE; Rühe J
    Small; 2024 Apr; 20(17):e2306682. PubMed ID: 38059850
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanical and swelling characterization of poly(N-isopropyl acrylamide -co- methoxy poly(ethylene glycol) methacrylate) sol-gels.
    Pollock JF; Healy KE
    Acta Biomater; 2010 Apr; 6(4):1307-18. PubMed ID: 19941981
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formulating an Ideal Protein Photoresist for Fabricating Dynamic Microstructures with High Aspect Ratios and Uniform Responsiveness.
    Lay CL; Lee YH; Lee MR; Phang IY; Ling XY
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8145-53. PubMed ID: 26974854
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rapid Formation of Acrylated Microstructures by Microwave-Induced Thermal Crosslinking.
    Lee SH; Lee WG; Chung BG; Park JH; Khademhosseini A
    Macromol Rapid Commun; 2009 Jun; 30(16):1382-1386. PubMed ID: 20011617
    [TBL] [Abstract][Full Text] [Related]  

  • 36. 3D printed microstructures for flexible electronic devices.
    Liu Y; Xu Y; Avila R; Liu C; Xie Z; Wang L; Yu X
    Nanotechnology; 2019 Oct; 30(41):414001. PubMed ID: 31247596
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High-Precision and Rapid Direct Laser Writing Using a Liquid Two-Photon Polymerization Initiator.
    Cao C; Shen X; Chen S; He M; Wang H; Ding C; Zhu D; Dong J; Chen H; Huang N; Kuang C; Jin M; Liu X
    ACS Appl Mater Interfaces; 2023 Jun; 15(25):30870-30879. PubMed ID: 37316963
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Femtosecond laser direct writing of metal microstructure in a stretchable poly(ethylene glycol) diacrylate (PEGDA) hydrogel.
    Terakawa M; Torres-Mapa ML; Takami A; Heinemann D; Nedyalkov NN; Nakajima Y; Hördt A; Ripken T; Heisterkamp A
    Opt Lett; 2016 Apr; 41(7):1392-5. PubMed ID: 27192244
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Adjustment-free two-sided 3D direct laser writing for aligned micro-optics on both substrate sides.
    Schmid M; Thiele S; Herkommer A; Giessen H
    Opt Lett; 2023 Jan; 48(1):131-134. PubMed ID: 36563386
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Three-Dimensional Printing of Pure Proteinaceous Microstructures by Femtosecond Laser Multiphoton Cross-Linking.
    Serien D; Sugioka K
    ACS Biomater Sci Eng; 2020 Feb; 6(2):1279-1287. PubMed ID: 33464859
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.