These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 32644785)

  • 1. 3D Printing of an
    Liu W; Erol O; Gracias DH
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33267-33275. PubMed ID: 32644785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Resolution 3D Printing of Stretchable Hydrogel Structures Using Optical Projection Lithography.
    Kunwar P; Jannini AVS; Xiong Z; Ransbottom MJ; Perkins JS; Henderson JH; Hasenwinkel JM; Soman P
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):1640-1649. PubMed ID: 31833757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Printing Method for Tough Multifunctional Particle-Based Double-Network Hydrogels.
    Zhao D; Liu Y; Liu B; Chen Z; Nian G; Qu S; Yang W
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):13714-13723. PubMed ID: 33720679
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Slide-Ring Structure-Based Double-Network Hydrogel with Enhanced Stretchability and Toughness for 3D-Bio-Printing and Its Potential Application as Artificial Small-Diameter Blood Vessels.
    Liu Y; Zhang Y; An Z; Zhao H; Zhang L; Cao Y; Mansoorianfar M; Liu X; Pei R
    ACS Appl Bio Mater; 2021 Dec; 4(12):8597-8606. PubMed ID: 35005952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D-Printed metal-organic frameworks within biocompatible polymers as excellent adsorbents for organic dyes removal.
    Pei R; Fan L; Zhao F; Xiao J; Yang Y; Lai A; Zhou SF; Zhan G
    J Hazard Mater; 2020 Feb; 384():121418. PubMed ID: 31818665
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-Dimensional Printing of Double-Network Hydrogels: Recent Progress, Challenges, and Future Outlook.
    Kunwar P; Ransbottom MJ; Soman P
    3D Print Addit Manuf; 2022 Oct; 9(5):435-449. PubMed ID: 36660293
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a 3D printable and highly stretchable ternary organic-inorganic nanocomposite hydrogel.
    Hu C; Haider MS; Hahn L; Yang M; Luxenhofer R
    J Mater Chem B; 2021 Jun; 9(22):4535-4545. PubMed ID: 34037651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal-Organic Frameworks as Platforms for Functional Materials.
    Cui Y; Li B; He H; Zhou W; Chen B; Qian G
    Acc Chem Res; 2016 Mar; 49(3):483-93. PubMed ID: 26878085
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alginate Hydrogel: A Shapeable and Versatile Platform for in Situ Preparation of Metal-Organic Framework-Polymer Composites.
    Zhu H; Zhang Q; Zhu S
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17395-401. PubMed ID: 27315047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printing of Metal-Organic Framework-Based Ionogels: Wearable Sensors with Colorimetric and Mechanical Responses.
    Pal S; Su YZ; Chen YW; Yu CH; Kung CW; Yu SS
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):28247-28257. PubMed ID: 35604841
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formulation of Metal-Organic Framework Inks for the 3D Printing of Robust Microporous Solids toward High-Pressure Gas Storage and Separation.
    Dhainaut J; Bonneau M; Ueoka R; Kanamori K; Furukawa S
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):10983-10992. PubMed ID: 32045200
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A 3D Printable and Mechanically Robust Hydrogel Based on Alginate and Graphene Oxide.
    Liu S; Bastola AK; Li L
    ACS Appl Mater Interfaces; 2017 Nov; 9(47):41473-41481. PubMed ID: 29116743
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemically Active, Porous 3D-Printed Thermoplastic Composites.
    Evans KA; Kennedy ZC; Arey BW; Christ JF; Schaef HT; Nune SK; Erikson RL
    ACS Appl Mater Interfaces; 2018 May; 10(17):15112-15121. PubMed ID: 29383933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasensitive Wearable Strain Sensors of 3D Printing Tough and Conductive Hydrogels.
    Wang J; Liu Y; Su S; Wei J; Rahman SE; Ning F; Christopher G; Cong W; Qiu J
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31766185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D Printing of Interpenetrating Network Flexible Hydrogels with Enhancement of Adhesiveness.
    Zhang L; Du H; Sun X; Cheng F; Lee W; Li J; Dai G; Fang NX; Liu Y
    ACS Appl Mater Interfaces; 2023 Sep; 15(35):41892-41905. PubMed ID: 37615397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silicate-Based Electro-Conductive Inks for Printing Soft Electronics and Tissue Engineering.
    Samimi Gharaie S; Seyfoori A; Khun Jush B; Zhou X; Pagan E; Godau B; Akbari M
    Gels; 2021 Nov; 7(4):. PubMed ID: 34940299
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gel-Print-Grow: A New Way of 3D Printing Metal-Organic Frameworks.
    Lawson S; Alwakwak AA; Rownaghi AA; Rezaei F
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56108-56117. PubMed ID: 33274935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selective Laser Sintering of Metal-Organic Frameworks: Production of Highly Porous Filters by 3D Printing onto a Polymeric Matrix.
    Lahtinen E; Precker RLM; Lahtinen M; Hey-Hawkins E; Haukka M
    Chempluschem; 2019 Feb; 84(2):222-225. PubMed ID: 31950695
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 3D Printing of Shear-Thinning Hyaluronic Acid Hydrogels with Secondary Cross-Linking.
    Ouyang L; Highley CB; Rodell CB; Sun W; Burdick JA
    ACS Biomater Sci Eng; 2016 Oct; 2(10):1743-1751. PubMed ID: 33440472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stepwise Synthesis of Metal-Organic Frameworks.
    Bosch M; Yuan S; Rutledge W; Zhou HC
    Acc Chem Res; 2017 Apr; 50(4):857-865. PubMed ID: 28350434
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.