These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 32644785)

  • 41. Custom 3D Printable Silicones with Tunable Stiffness.
    Durban MM; Lenhardt JM; Wu AS; Small W; Bryson TM; Perez-Perez L; Nguyen DT; Gammon S; Smay JE; Duoss EB; Lewicki JP; Wilson TS
    Macromol Rapid Commun; 2018 Feb; 39(4):. PubMed ID: 29210493
    [TBL] [Abstract][Full Text] [Related]  

  • 42. 3D Printing of Antimicrobial Alginate/Bacterial-Cellulose Composite Hydrogels by Incorporating Copper Nanostructures.
    Gutierrez E; Burdiles PA; Quero F; Palma P; Olate-Moya F; Palza H
    ACS Biomater Sci Eng; 2019 Nov; 5(11):6290-6299. PubMed ID: 33405536
    [TBL] [Abstract][Full Text] [Related]  

  • 43. 3D-Printed Metal-Organic Framework Monoliths for Gas Adsorption Processes.
    Thakkar H; Eastman S; Al-Naddaf Q; Rownaghi AA; Rezaei F
    ACS Appl Mater Interfaces; 2017 Oct; 9(41):35908-35916. PubMed ID: 28952710
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Scalable and Automated Fabrication of Conductive Tough-Hydrogel Microfibers with Ultrastretchability, 3D Printability, and Stress Sensitivity.
    Wei S; Qu G; Luo G; Huang Y; Zhang H; Zhou X; Wang L; Liu Z; Kong T
    ACS Appl Mater Interfaces; 2018 Apr; 10(13):11204-11212. PubMed ID: 29504395
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Green Synthesis of Zr-Based Metal-Organic Framework Hydrogel Composites and Their Enhanced Adsorptive Properties.
    Klein SE; Sosa JD; Castonguay AC; Flores WI; Zarzar LD; Liu Y
    Inorg Chem Front; 2020 Dec; 7(24):4813-4821. PubMed ID: 33520236
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Electron beam crosslinking of alginate/nanoclay ink to improve functional properties of 3D printed hydrogel for removing heavy metal ions.
    Shahbazi M; Jäger H; Ahmadi SJ; Lacroix M
    Carbohydr Polym; 2020 Jul; 240():116211. PubMed ID: 32475544
    [TBL] [Abstract][Full Text] [Related]  

  • 47. 3D printing of hydrogel composite systems: Recent advances in technology for tissue engineering.
    Jang TS; Jung HD; Pan HM; Han WT; Chen S; Song J
    Int J Bioprint; 2018; 4(1):126. PubMed ID: 33102909
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Highly Stretchable and Transparent Double-Network Hydrogel Ionic Conductors as Flexible Thermal-Mechanical Dual Sensors and Electroluminescent Devices.
    Yang B; Yuan W
    ACS Appl Mater Interfaces; 2019 May; 11(18):16765-16775. PubMed ID: 30983316
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bioinspired 3D printable pectin-nanocellulose ink formulations.
    Cernencu AI; Lungu A; Stancu IC; Serafim A; Heggset E; Syverud K; Iovu H
    Carbohydr Polym; 2019 Sep; 220():12-21. PubMed ID: 31196530
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Metal-Organic Frameworks at the Biointerface: Synthetic Strategies and Applications.
    Doonan C; Riccò R; Liang K; Bradshaw D; Falcaro P
    Acc Chem Res; 2017 Jun; 50(6):1423-1432. PubMed ID: 28489346
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Processing and Properties of Chitosan Inks for 3D Printing of Hydrogel Microstructures.
    Wu Q; Therriault D; Heuzey MC
    ACS Biomater Sci Eng; 2018 Jul; 4(7):2643-2652. PubMed ID: 33435127
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Inkjet-Spray Hybrid Printing for 3D Freeform Fabrication of Multilayered Hydrogel Structures.
    Yoon S; Park JA; Lee HR; Yoon WH; Hwang DS; Jung S
    Adv Healthc Mater; 2018 Jul; 7(14):e1800050. PubMed ID: 29708307
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Site Isolation in Metal-Organic Frameworks Enables Novel Transition Metal Catalysis.
    Drake T; Ji P; Lin W
    Acc Chem Res; 2018 Sep; 51(9):2129-2138. PubMed ID: 30129753
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Surface Engineered Biomimetic Inks Based on UV Cross-Linkable Wood Biopolymers for 3D Printing.
    Xu W; Zhang X; Yang P; Långvik O; Wang X; Zhang Y; Cheng F; Österberg M; Willför S; Xu C
    ACS Appl Mater Interfaces; 2019 Apr; 11(13):12389-12400. PubMed ID: 30844234
    [TBL] [Abstract][Full Text] [Related]  

  • 55. 3D Printing of a Double Network Hydrogel with a Compression Strength and Elastic Modulus Greater than those of Cartilage.
    Yang F; Tadepalli V; Wiley BJ
    ACS Biomater Sci Eng; 2017 May; 3(5):863-869. PubMed ID: 33440506
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Metal-organic frameworks: from molecules/metal ions to crystals to superstructures.
    Carné-Sánchez A; Imaz I; Stylianou KC; Maspoch D
    Chemistry; 2014 Apr; 20(18):5192-201. PubMed ID: 24643892
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Diffusion Control in the in Situ Synthesis of Iconic Metal-Organic Frameworks within an Ionic Polymer Matrix.
    Lim J; Lee EJ; Choi JS; Jeong NC
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3793-3800. PubMed ID: 29297676
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Performance Fabrics Obtained by
    Molco M; Laye F; Samperio E; Ziv Sharabani S; Fourman V; Sherman D; Tsotsalas M; Wöll C; Lahann J; Sitt A
    ACS Appl Mater Interfaces; 2021 Mar; 13(10):12491-12500. PubMed ID: 33661621
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Advances in metal-organic framework coatings: versatile synthesis and broad applications.
    Meng J; Liu X; Niu C; Pang Q; Li J; Liu F; Liu Z; Mai L
    Chem Soc Rev; 2020 May; 49(10):3142-3186. PubMed ID: 32249862
    [TBL] [Abstract][Full Text] [Related]  

  • 60. 3D printing of highly stretchable hydrogel with diverse UV curable polymers.
    Ge Q; Chen Z; Cheng J; Zhang B; Zhang YF; Li H; He X; Yuan C; Liu J; Magdassi S; Qu S
    Sci Adv; 2021 Jan; 7(2):. PubMed ID: 33523958
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.