These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 32644807)

  • 1. Combining Monte Carlo and Molecular Dynamics Simulations for Enhanced Binding Free Energy Estimation through Markov State Models.
    Gilabert JF; Gracia Carmona O; Hogner A; Guallar V
    J Chem Inf Model; 2020 Nov; 60(11):5529-5539. PubMed ID: 32644807
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PELE-MSM: A Monte Carlo Based Protocol for the Estimation of Absolute Binding Free Energies.
    Gilabert JF; Grebner C; Soler D; Lecina D; Municoy M; Gracia Carmona O; Soliva R; Packer MJ; Hughes SJ; Tyrchan C; Hogner A; Guallar V
    J Chem Theory Comput; 2019 Nov; 15(11):6243-6253. PubMed ID: 31589430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding Modes of Ligands Using Enhanced Sampling (BLUES): Rapid Decorrelation of Ligand Binding Modes via Nonequilibrium Candidate Monte Carlo.
    Gill SC; Lim NM; Grinaway PB; Rustenburg AS; Fass J; Ross GA; Chodera JD; Mobley DL
    J Phys Chem B; 2018 May; 122(21):5579-5598. PubMed ID: 29486559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein-ligand binding free energies from exhaustive docking.
    Purisima EO; Hogues H
    J Phys Chem B; 2012 Jun; 116(23):6872-9. PubMed ID: 22432509
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein surface roughness accounts for binding free energy of Plasmepsin II-ligand complexes.
    Valdés-Tresanco ME; Valdés-Tresanco MS; Valiente PA; Cocho G; Mansilla R; Nieto-Villar JM
    J Mol Recognit; 2018 Jan; 31(1):. PubMed ID: 28895236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. New Monte Carlo Based Technique To Study DNA-Ligand Interactions.
    Cabeza de Vaca I; Lucas MF; Guallar V
    J Chem Theory Comput; 2015 Dec; 11(12):5598-605. PubMed ID: 26642982
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using robotics to fold proteins and dock ligands.
    Brutlag D; Apaydin S; Guestrin C; Hsu D; Varma C; Singh A; Latombe JC
    Bioinformatics; 2002; 18 Suppl 2():S74. PubMed ID: 12385986
    [TBL] [Abstract][Full Text] [Related]  

  • 8.
    Fossat MJ; Pappu RV
    J Phys Chem B; 2019 Aug; 123(32):6952-6967. PubMed ID: 31362509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo Free Ligand Diffusion with Markov State Model Analysis and Absolute Binding Free Energy Calculations.
    Takahashi R; Gil VA; Guallar V
    J Chem Theory Comput; 2014 Jan; 10(1):282-8. PubMed ID: 26579911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing water sampling of buried binding sites using nonequilibrium candidate Monte Carlo.
    Bergazin TD; Ben-Shalom IY; Lim NM; Gill SC; Gilson MK; Mobley DL
    J Comput Aided Mol Des; 2021 Feb; 35(2):167-177. PubMed ID: 32968887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calculation of the standard binding free energy of sparsomycin to the ribosomal peptidyl-transferase P-site using molecular dynamics simulations with restraining potentials.
    Ge X; Roux B
    J Mol Recognit; 2010; 23(2):128-41. PubMed ID: 20151411
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing sampling of water rehydration upon ligand binding using variants of grand canonical Monte Carlo.
    Ge Y; Melling OJ; Dong W; Essex JW; Mobley DL
    J Comput Aided Mol Des; 2022 Oct; 36(10):767-779. PubMed ID: 36198874
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein:Ligand binding free energies: A stringent test for computational protein design.
    Druart K; Palmai Z; Omarjee E; Simonson T
    J Comput Chem; 2016 Feb; 37(4):404-15. PubMed ID: 26503829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Methods for calculating the absolute entropy and free energy of biological systems based on ideas from polymer physics.
    Meirovitch H
    J Mol Recognit; 2010; 23(2):153-72. PubMed ID: 19650071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Grand canonical Monte Carlo simulation of ligand-protein binding.
    Clark M; Guarnieri F; Shkurko I; Wiseman J
    J Chem Inf Model; 2006; 46(1):231-42. PubMed ID: 16426059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced ligand sampling for relative protein-ligand binding free energy calculations.
    Kaus JW; McCammon JA
    J Phys Chem B; 2015 May; 119(20):6190-7. PubMed ID: 25906170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fragment Pose Prediction Using Non-equilibrium Candidate Monte Carlo and Molecular Dynamics Simulations.
    Lim NM; Osato M; Warren GL; Mobley DL
    J Chem Theory Comput; 2020 Apr; 16(4):2778-2794. PubMed ID: 32167763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Absolute Alchemical Free Energy Calculations for Ligand Binding: A Beginner's Guide.
    Aldeghi M; Bluck JP; Biggin PC
    Methods Mol Biol; 2018; 1762():199-232. PubMed ID: 29594774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamics of coupled protein adsorption and stability using hybrid Monte Carlo simulations.
    Zhong ED; Shirts MR
    Langmuir; 2014 May; 30(17):4952-61. PubMed ID: 24716898
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo on the manifold and MD refinement for binding pose prediction of protein-ligand complexes: 2017 D3R Grand Challenge.
    Ignatov M; Liu C; Alekseenko A; Sun Z; Padhorny D; Kotelnikov S; Kazennov A; Grebenkin I; Kholodov Y; Kolosvari I; Perez A; Dill K; Kozakov D
    J Comput Aided Mol Des; 2019 Jan; 33(1):119-127. PubMed ID: 30421350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.