These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 32644969)

  • 1. Integrated model predictive control of water resource recovery facilities and sewer systems in a smart grid: example of full-scale implementation in Kolding.
    Stentoft PA; Vezzaro L; Mikkelsen PS; Grum M; Munk-Nielsen T; Tychsen P; Madsen H; Halvgaard R
    Water Sci Technol; 2020 Apr; 81(8):1766-1777. PubMed ID: 32644969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prioritize effluent quality, operational costs or global warming? - Using predictive control of wastewater aeration for flexible management of objectives in WRRFs.
    Stentoft PA; Munk-Nielsen T; Møller JK; Madsen H; Valverde-Pérez B; Mikkelsen PS; Vezzaro L
    Water Res; 2021 May; 196():116960. PubMed ID: 33740729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Towards model predictive control: online predictions of ammonium and nitrate removal by using a stochastic ASM.
    Stentoft PA; Munk-Nielsen T; Vezzaro L; Madsen H; Mikkelsen PS; Møller JK
    Water Sci Technol; 2019 Jan; 79(1):51-62. PubMed ID: 30816862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modelling energy costs for different operational strategies of a large water resource recovery facility.
    Póvoa P; Oehmen A; Inocêncio P; Matos JS; Frazão A
    Water Sci Technol; 2017 May; 75(9-10):2139-2148. PubMed ID: 28498126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The difference between energy consumption and energy cost: Modelling energy tariff structures for water resource recovery facilities.
    Aymerich I; Rieger L; Sobhani R; Rosso D; Corominas L
    Water Res; 2015 Sep; 81():113-23. PubMed ID: 26048700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Precipitation effects on parasite, indicator bacteria, and wastewater micropollutant loads from a water resource recovery facility influent and effluent.
    Tolouei S; Autixier L; Taghipour M; Burnet JB; Bonsteel J; Duy SV; Sauvé S; Prévost M; Dorner S
    J Water Health; 2019 Oct; 17(5):701-716. PubMed ID: 31638022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Demand response through reject water scheduling in water resource recovery facilities: A demonstration with BSM2.
    Liu Q; Dereli RK; Flynn D; Casey E
    Water Res; 2021 Jan; 188():116516. PubMed ID: 33096515
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A framework for model-based assessment of resilience in water resource recovery facilities against power outage.
    Juan-García P; Rieger L; Darch G; Schraa O; Corominas L
    Water Res; 2021 Sep; 202():117459. PubMed ID: 34358908
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Systematic comparison framework for selecting the best retrofitting alternative for an existing water resource recovery facility.
    Machado VC; Lafuente J; Baeza JA
    Water Environ Res; 2020 Dec; 92(12):2072-2085. PubMed ID: 32497349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An essential tool for WRRF modelling: a realistic and complete influent generator for flow rate and water quality based on data-driven methods.
    Li F; Vanrolleghem PA
    Water Sci Technol; 2022 May; 85(9):2722-2736. PubMed ID: 35576264
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A full-scale operational digital twin for a water resource recovery facility-A case study of Eindhoven Water Resource Recovery Facility.
    Daneshgar S; Polesel F; Borzooei S; Sørensen HR; Peeters R; Weijers S; Nopens I; Torfs E
    Water Environ Res; 2024 Mar; 96(3):e11016. PubMed ID: 38527902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic air supply models add realism to the evaluation of control strategies in water resource recovery facilities.
    Juan-García P; Kiser MA; Schraa O; Rieger L; Corominas L
    Water Sci Technol; 2018 Oct; 78(5-6):1104-1114. PubMed ID: 30339535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-point monitoring of nitrous oxide emissions in three full-scale conventional activated sludge tanks in Europe.
    Bellandi G; Porro J; Senesi E; Caretti C; Caffaz S; Weijers S; Nopens I; Gori R
    Water Sci Technol; 2018 Feb; 77(3-4):880-890. PubMed ID: 29488951
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Life cycle energy use and greenhouse gas emission analysis for a water resource recovery facility in India.
    Miller-Robbie L; Ramaswami A; Kumar P
    Water Environ Res; 2013 Jul; 85(7):621-31. PubMed ID: 23944144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimisation potential for a SBR plant based upon integrated modelling for dry and wet weather conditions.
    Rönner-Holm SG; Kaufmann Alves I; Steinmetz H; Holm NC
    Water Sci Technol; 2009; 60(8):1953-64. PubMed ID: 19844042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contributions of wastewater, runoff and sewer deposit erosion to wet weather pollutant loads in combined sewer systems.
    Gasperi J; Gromaire MC; Kafi M; Moilleron R; Chebbo G
    Water Res; 2010 Dec; 44(20):5875-86. PubMed ID: 20696453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benchmarking the Energy Intensity of Small Water Resource Recovery Facilities.
    Hanna SM; Thompson MJ; Dahab MF; Williams RE; Dvorak BI
    Water Environ Res; 2018 Aug; 90(8):738-747. PubMed ID: 30031407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal trends of perfluoroalkyl substances in limed biosolids from a large municipal water resource recovery facility.
    Armstrong DL; Lozano N; Rice CP; Ramirez M; Torrents A
    J Environ Manage; 2016 Jan; 165():88-95. PubMed ID: 26413802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling, Instrumentation, Automation, and Optimization of Water Resource Recovery Facilities.
    Sweeney MW; Kabouris JC
    Water Environ Res; 2018 Oct; 90(10):1007-1020. PubMed ID: 30126474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling sewer sediment deposition, erosion, and transport processes to predict acute influent and reduce combined sewer overflows and CO(2) emissions.
    Mouri G; Oki T
    Water Sci Technol; 2010; 62(10):2346-56. PubMed ID: 21076221
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.