These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 32645043)
1. Mapping within‑field variability of soybean evapotranspiration and crop coefficient using the Earth Engine Evaporation Flux (EEFlux) application. Venancio LP; Eugenio FC; Filgueiras R; França da Cunha F; Argolo Dos Santos R; Ribeiro WR; Mantovani EC PLoS One; 2020; 15(7):e0235620. PubMed ID: 32645043 [TBL] [Abstract][Full Text] [Related]
2. Assessment of the vineyard water footprint by using ancillary data and EEFlux satellite images. Examples in the Chilean central zone. Carrasco-Benavides M; Ortega-Farías S; Gil PM; Knopp D; Morales-Salinas L; Lagos LO; de la Fuente D; López-Olivari R; Fuentes S Sci Total Environ; 2022 Mar; 811():152452. PubMed ID: 34933048 [TBL] [Abstract][Full Text] [Related]
3. Maize Crop Coefficient Estimated from UAV-Measured Multispectral Vegetation Indices. Zhang Y; Han W; Niu X; Li G Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31795309 [TBL] [Abstract][Full Text] [Related]
4. Estimating crop coefficients and actual evapotranspiration in citrus orchards with sporadic cover weeds based on ground and remote sensing data. Ippolito M; De Caro D; Ciraolo G; Minacapilli M; Provenzano G Irrig Sci; 2023; 41(1):5-22. PubMed ID: 36778662 [TBL] [Abstract][Full Text] [Related]
5. [Adaptability analysis of FAO Penman-Monteith model over typical underlying surfaces in the Sanjiang Plain, Northeast China]. Jia ZJ; Han L; Wang G; Zhang TS Ying Yong Sheng Tai Xue Bao; 2014 May; 25(5):1327-34. PubMed ID: 25129932 [TBL] [Abstract][Full Text] [Related]
6. Estimation of maize evapotraspiration under drought stress - A case study of Huaibei Plain, China. Yuan H; Cui Y; Ning S; Jiang S; Yuan X; Tang G PLoS One; 2019; 14(11):e0223756. PubMed ID: 31689311 [TBL] [Abstract][Full Text] [Related]
7. [Modeling evapotranspiration of greenhouse tomato under different water conditions based on the dual crop coefficient method]. Gong XW; Liu H; Sun JS; Ma XJ; Wang WN; Cui YS Ying Yong Sheng Tai Xue Bao; 2017 Apr; 28(4):1255-1264. PubMed ID: 29741323 [TBL] [Abstract][Full Text] [Related]
8. Development of Smart Weighing Lysimeter for Measuring Evapotranspiration and Developing Crop Coefficient for Greenhouse Chrysanthemum. Sagar A; Hasan M; Singh DK; Al-Ansari N; Chakraborty D; Singh MC; Iquebal MA; Kumar A; Malkani P; Vishwakarma DK; Elbeltagi A Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015996 [TBL] [Abstract][Full Text] [Related]
9. Evapotranspiration and crop coefficients of Italian zucchini cultivated with recycled paper as mulch. Oliveira RM; Cunha FFD; Silva GHD; Andrade LM; Morais CV; Ferreira PMO; Raimundi FPG; Freitas ARJ; Souza CM; Oliveira RA PLoS One; 2020; 15(5):e0232554. PubMed ID: 32374758 [TBL] [Abstract][Full Text] [Related]
10. Using spatio-temporal fusion of Landsat-8 and MODIS data to derive phenology, biomass and yield estimates for corn and soybean. Liao C; Wang J; Dong T; Shang J; Liu J; Song Y Sci Total Environ; 2019 Feb; 650(Pt 2):1707-1721. PubMed ID: 30273730 [TBL] [Abstract][Full Text] [Related]
11. [Estimation of evapotranspiration and crop coefficient in Dajiuhu peatland of Shennongjia based on FAO56 Penman-Monteith]. Hu C; Ge JW; Xu XN; Tan YS; Yuan CH Ying Yong Sheng Tai Xue Bao; 2020 May; 31(5):1699-1706. PubMed ID: 32530249 [TBL] [Abstract][Full Text] [Related]
12. [Effects of marshland reclamation on evapotranspiration in the Sanjiang Plain]. Jia ZJ; Zhang W; Huang Y; Zhao XS; Song CC Huan Jing Ke Xue; 2010 Apr; 31(4):833-42. PubMed ID: 20527159 [TBL] [Abstract][Full Text] [Related]
13. Methods to estimate irrigated reference crop evapotranspiration - a review. Kumar R; Jat MK; Shankar V Water Sci Technol; 2012; 66(3):525-35. PubMed ID: 22744682 [TBL] [Abstract][Full Text] [Related]
14. Evapotranspiration adjustment for irrigated maize-soybean rotation systems in Nebraska, USA. Gonçalves IZ; Neale CMU; Suyker A; Marin FR Int J Biometeorol; 2023 Nov; 67(11):1869-1879. PubMed ID: 37674062 [TBL] [Abstract][Full Text] [Related]
15. Optimizing evapotranspiration and crop irrigation requirements of tropical forages cropping systems in Southern Brazil. Gonçalves IZ; Mendonça FC; Sanches AC; Marin FR Int J Biometeorol; 2024 Jan; 68(1):57-67. PubMed ID: 37880506 [TBL] [Abstract][Full Text] [Related]
16. Effects of temperature, precipitation and carbon dioxide concentrations on the requirements for crop irrigation water in China under future climate scenarios. Zhang Y; Wang Y; Niu H Sci Total Environ; 2019 Mar; 656():373-387. PubMed ID: 30513428 [TBL] [Abstract][Full Text] [Related]
17. Evaluating the contribution of satellite-derived evapotranspiration in the calibration of numerical groundwater models in remote zones using the EEFlux tool. Blin N; Suárez F Sci Total Environ; 2023 Feb; 858(Pt 1):159764. PubMed ID: 36306852 [TBL] [Abstract][Full Text] [Related]
18. Simulating Crop Evapotranspiration Response under Different Planting Scenarios by Modified SWAT Model in an Irrigation District, Northwest China. Liu X; Wang S; Xue H; Singh VP PLoS One; 2015; 10(10):e0139839. PubMed ID: 26439928 [TBL] [Abstract][Full Text] [Related]
19. Climate adaptation by crop migration. Sloat LL; Davis SJ; Gerber JS; Moore FC; Ray DK; West PC; Mueller ND Nat Commun; 2020 Mar; 11(1):1243. PubMed ID: 32144261 [TBL] [Abstract][Full Text] [Related]
20. Detecting crop water requirement indicators in irrigated agroecosystems from soil water content profiles: An application for a citrus orchard. Segovia-Cardozo DA; Franco L; Provenzano G Sci Total Environ; 2022 Feb; 806(Pt 1):150492. PubMed ID: 34844327 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]