BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 32645336)

  • 1. Continuous in-line homogenization process for scale-up production of naltrexone-loaded PLGA microparticles.
    Sharifi F; Otte A; Yoon G; Park K
    J Control Release; 2020 Sep; 325():347-358. PubMed ID: 32645336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Impact of Post-Processing Temperature on PLGA Microparticle Properties.
    Otte A; Soh BK; Park K
    Pharm Res; 2023 Nov; 40(11):2677-2685. PubMed ID: 37589826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transitioning from a lab-scale PLGA microparticle formulation to pilot-scale manufacturing.
    Otte A; Park K
    J Control Release; 2022 Aug; 348():841-848. PubMed ID: 35752252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rational design, fabrication, characterization and in vitro testing of biodegradable microparticles that generate targeted and sustained transgene expression in HepG2 liver cells.
    Intra J; Salem AK
    J Drug Target; 2011 Jul; 19(6):393-408. PubMed ID: 20681752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Scanning Analysis of Sequential Semisolvent Vapor Impact To Study Naltrexone Release from Poly(lactide-co-glycolide) Microparticles.
    Garner J; Skidmore S; Hadar J; Park H; Park K; Otte A; Jhon YK; Xu X; Qin B; Wang Y
    Mol Pharm; 2022 Nov; 19(11):4286-4298. PubMed ID: 36166409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative studies on the properties of glycyrrhetinic acid-loaded PLGA microparticles prepared by emulsion and template methods.
    Wang H; Zhang G; Sui H; Liu Y; Park K; Wang W
    Int J Pharm; 2015 Dec; 496(2):723-31. PubMed ID: 26581771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study of PLGA microparticle properties loaded with micronized, nanosized or dissolved drug.
    Zhang C; Bodmeier R
    Int J Pharm; 2022 Nov; 628():122313. PubMed ID: 36272513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of the microencapsulation method and peptide loading on poly(lactic acid) and poly(lactic-co-glycolic acid) degradation during in vitro testing.
    Witschi C; Doelker E
    J Control Release; 1998 Feb; 51(2-3):327-41. PubMed ID: 9685930
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Initial Formation of the Skin Layer of PLGA Microparticles.
    Sharifi F; Otte A; Park K
    Adv Healthc Mater; 2022 Apr; 11(7):e2101427. PubMed ID: 34601826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface analysis of sequential semi-solvent vapor impact (SAVI) for studying microstructural arrangements of poly(lactide-co-glycolide) microparticles.
    Garner J; Skidmore S; Hadar J; Park H; Park K; Qin B; Wang Y
    J Control Release; 2022 Oct; 350():600-612. PubMed ID: 36057396
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microparticles produced by the hydrogel template method for sustained drug delivery.
    Lu Y; Sturek M; Park K
    Int J Pharm; 2014 Jan; 461(1-2):258-69. PubMed ID: 24333903
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of formulation parameters on encapsulation efficiency and release behavior of risperidone poly(D,L-lactide-co-glycolide) microsphere.
    Su Z; Sun F; Shi Y; Jiang C; Meng Q; Teng L; Li Y
    Chem Pharm Bull (Tokyo); 2009 Nov; 57(11):1251-6. PubMed ID: 19881277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design of physostigmine-loaded polymeric microparticles for pretreatment against exposure to organophosphate agents.
    Chaw CS; Tan CW; Yang YY; Wang L; Moochhala S
    Biomaterials; 2003 Mar; 24(7):1271-7. PubMed ID: 12527268
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication, characterization and in vitro evaluation of poly(D,L-lactide-co-glycolide) microparticles loaded with polyamidoamine-plasmid DNA dendriplexes for applications in nonviral gene delivery.
    Intra J; Salem AK
    J Pharm Sci; 2010 Jan; 99(1):368-84. PubMed ID: 19670295
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein encapsulation and release from poly(lactide-co-glycolide) microspheres: effect of the protein and polymer properties and of the co-encapsulation of surfactants.
    Blanco D; Alonso MJ
    Eur J Pharm Biopharm; 1998 May; 45(3):285-94. PubMed ID: 9653633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced encapsulation and bioavailability of breviscapine in PLGA microparticles by nanocrystal and water-soluble polymer template techniques.
    Wang H; Zhang G; Ma X; Liu Y; Feng J; Park K; Wang W
    Eur J Pharm Biopharm; 2017 Jun; 115():177-185. PubMed ID: 28263795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineered PLGA microspheres for extended-release of naltrexone:
    Ghareh Sheikhlou M; Shabani Ravari N; Behrouzi M; Goodarzi N; Saghafian Larijani R; Varshochian R; Dinarvand R; Rouini MR
    Pharm Dev Technol; 2023 Feb; 28(2):190-199. PubMed ID: 36688610
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Paclitaxel-loaded polymeric microparticles: quantitative relationships between in vitro drug release rate and in vivo pharmacodynamics.
    Tsai M; Lu Z; Wientjes MG; Au JL
    J Control Release; 2013 Dec; 172(3):737-44. PubMed ID: 24056144
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of a sustained-release system for perivascular delivery of dipyridamole.
    Zhu W; Masaki T; Bae YH; Rathi R; Cheung AK; Kern SE
    J Biomed Mater Res B Appl Biomater; 2006 Apr; 77(1):135-43. PubMed ID: 16206204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Coupling the in vivo performance to the in vitro characterization of PLGA microparticles.
    Otte A; Damen F; Goergen C; Park K
    Int J Pharm; 2021 Jul; 604():120738. PubMed ID: 34048931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.