These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 32645447)
1. Free energy-based model of CTCF-mediated chromatin looping in the human genome. Dawson WK; Lazniewski M; Plewczynski D Methods; 2020 Oct; 181-182():35-51. PubMed ID: 32645447 [TBL] [Abstract][Full Text] [Related]
2. From DNA human sequence to the chromatin higher order organisation and its biological meaning: Using biomolecular interaction networks to understand the influence of structural variation on spatial genome organisation and its functional effect. Chiliński M; Sengupta K; Plewczynski D Semin Cell Dev Biol; 2022 Jan; 121():171-185. PubMed ID: 34429265 [TBL] [Abstract][Full Text] [Related]
4. Methods for comparative ChIA-PET and Hi-C data analysis. Capurso D; Tang Z; Ruan Y Methods; 2020 Jan; 170():69-74. PubMed ID: 31629084 [TBL] [Abstract][Full Text] [Related]
5. 7C: Computational Chromosome Conformation Capture by Correlation of ChIP-seq at CTCF motifs. Ibn-Salem J; Andrade-Navarro MA BMC Genomics; 2019 Oct; 20(1):777. PubMed ID: 31653198 [TBL] [Abstract][Full Text] [Related]
6. Deciphering Noncoding RNA and Chromatin Interactions: Multiplex Chromatin Interaction Analysis by Paired-End Tag Sequencing (mChIA-PET). Choy J; Fullwood MJ Methods Mol Biol; 2017; 1468():63-89. PubMed ID: 27662871 [TBL] [Abstract][Full Text] [Related]
7. ChIA-PET2: a versatile and flexible pipeline for ChIA-PET data analysis. Li G; Chen Y; Snyder MP; Zhang MQ Nucleic Acids Res; 2017 Jan; 45(1):e4. PubMed ID: 27625391 [TBL] [Abstract][Full Text] [Related]
8. A sequence-based deep learning approach to predict CTCF-mediated chromatin loop. Lv H; Dao FY; Zulfiqar H; Su W; Ding H; Liu L; Lin H Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33634313 [TBL] [Abstract][Full Text] [Related]
9. MAPS: Model-based analysis of long-range chromatin interactions from PLAC-seq and HiChIP experiments. Juric I; Yu M; Abnousi A; Raviram R; Fang R; Zhao Y; Zhang Y; Qiu Y; Yang Y; Li Y; Ren B; Hu M PLoS Comput Biol; 2019 Apr; 15(4):e1006982. PubMed ID: 30986246 [TBL] [Abstract][Full Text] [Related]
10. HiCORE: Hi-C Analysis for Identification of Core Chromatin Looping Regions with Higher Resolution. Lee H; Seo PJ Mol Cells; 2021 Dec; 44(12):883-892. PubMed ID: 34963105 [TBL] [Abstract][Full Text] [Related]
11. DeepChIA-PET: Accurately predicting ChIA-PET from Hi-C and ChIP-seq with deep dilated networks. Liu T; Wang Z PLoS Comput Biol; 2023 Jul; 19(7):e1011307. PubMed ID: 37440599 [TBL] [Abstract][Full Text] [Related]
12. Multiplex chromatin interactions with single-molecule precision. Zheng M; Tian SZ; Capurso D; Kim M; Maurya R; Lee B; Piecuch E; Gong L; Zhu JJ; Li Z; Wong CH; Ngan CY; Wang P; Ruan X; Wei CL; Ruan Y Nature; 2019 Feb; 566(7745):558-562. PubMed ID: 30778195 [TBL] [Abstract][Full Text] [Related]
13. Identification and utilization of copy number information for correcting Hi-C contact map of cancer cell lines. Khalil AIS; Muzaki SRBM; Chattopadhyay A; Sanyal A BMC Bioinformatics; 2020 Nov; 21(1):506. PubMed ID: 33160308 [TBL] [Abstract][Full Text] [Related]
18. Long-read ChIA-PET for base-pair-resolution mapping of haplotype-specific chromatin interactions. Li X; Luo OJ; Wang P; Zheng M; Wang D; Piecuch E; Zhu JJ; Tian SZ; Tang Z; Li G; Ruan Y Nat Protoc; 2017 May; 12(5):899-915. PubMed ID: 28358394 [TBL] [Abstract][Full Text] [Related]
19. ChIA-PET analysis of transcriptional chromatin interactions. Zhang J; Poh HM; Peh SQ; Sia YY; Li G; Mulawadi FH; Goh Y; Fullwood MJ; Sung WK; Ruan X; Ruan Y Methods; 2012 Nov; 58(3):289-99. PubMed ID: 22926262 [TBL] [Abstract][Full Text] [Related]
20. Chromatin Immunoprecipitation for Chromatin Interaction Analysis Using Paired-End-Tag (ChIA-PET) Sequencing in Tadpole Tissues. Buisine N; Ruan X; Ruan Y; Sachs LM Cold Spring Harb Protoc; 2018 Aug; 2018(8):. PubMed ID: 29895563 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]