These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Computational methods for the prediction of chromatin interaction and organization using sequence and epigenomic profiles. Tao H; Li H; Xu K; Hong H; Jiang S; Du G; Wang J; Sun Y; Huang X; Ding Y; Li F; Zheng X; Chen H; Bo X Brief Bioinform; 2021 Sep; 22(5):. PubMed ID: 33454752 [TBL] [Abstract][Full Text] [Related]
23. The genome organization of Neurospora crassa at high resolution uncovers principles of fungal chromosome topology. Rodriguez S; Ward A; Reckard AT; Shtanko Y; Hull-Crew C; Klocko AD G3 (Bethesda); 2022 May; 12(5):. PubMed ID: 35244156 [TBL] [Abstract][Full Text] [Related]
24. Chain organization of human interphase chromosome determines the spatiotemporal dynamics of chromatin loci. Liu L; Shi G; Thirumalai D; Hyeon C PLoS Comput Biol; 2018 Dec; 14(12):e1006617. PubMed ID: 30507936 [TBL] [Abstract][Full Text] [Related]
25. Chromatin interaction analysis using paired-end tag sequencing. Fullwood MJ; Han Y; Wei CL; Ruan X; Ruan Y Curr Protoc Mol Biol; 2010 Jan; Chapter 21():Unit 21.15.1-25. PubMed ID: 20069536 [TBL] [Abstract][Full Text] [Related]
26. ChIAPoP: a new tool for ChIA-PET data analysis. Huang W; Medvedovic M; Zhang J; Niu L Nucleic Acids Res; 2019 Apr; 47(7):e37. PubMed ID: 30753588 [TBL] [Abstract][Full Text] [Related]
27. An integrated 3-Dimensional Genome Modeling Engine for data-driven simulation of spatial genome organization. Szałaj P; Tang Z; Michalski P; Pietal MJ; Luo OJ; Sadowski M; Li X; Radew K; Ruan Y; Plewczynski D Genome Res; 2016 Dec; 26(12):1697-1709. PubMed ID: 27789526 [TBL] [Abstract][Full Text] [Related]
28. Investigation of the spatial structure and interactions of the genome at sub-kilobase-pair resolution using T2C. Kolovos P; Brouwer RWW; Kockx CEM; Lesnussa M; Kepper N; Zuin J; Imam AMA; van de Werken HJG; Wendt KS; Knoch TA; van IJcken WFJ; Grosveld F Nat Protoc; 2018 Mar; 13(3):459-477. PubMed ID: 29419817 [TBL] [Abstract][Full Text] [Related]
29. Chromatin Interaction Analysis with Updated ChIA-PET Tool (V3). Li G; Sun T; Chang H; Cai L; Hong P; Zhou Q Genes (Basel); 2019 Jul; 10(7):. PubMed ID: 31336684 [TBL] [Abstract][Full Text] [Related]
30. Progresses in the plant 3D chromatin architecture. Dong QL; Wang JB; Li XC; Gong L Yi Chuan; 2020 Jan; 42(1):73-86. PubMed ID: 31956098 [TBL] [Abstract][Full Text] [Related]
31. A maximum likelihood algorithm for reconstructing 3D structures of human chromosomes from chromosomal contact data. Oluwadare O; Zhang Y; Cheng J BMC Genomics; 2018 Feb; 19(1):161. PubMed ID: 29471801 [TBL] [Abstract][Full Text] [Related]
32. Reconstruction of 3D genome architecture via a two-stage algorithm. Segal MR; Bengtsson HL BMC Bioinformatics; 2015 Nov; 16():373. PubMed ID: 26553003 [TBL] [Abstract][Full Text] [Related]
33. Entropic effect of macromolecular crowding enhances binding between nucleosome clutches in heterochromatin, but not in euchromatin. Oh I; Choi S; Jung Y; Kim JS Sci Rep; 2018 Apr; 8(1):5469. PubMed ID: 29615710 [TBL] [Abstract][Full Text] [Related]
34. 3D replicon distributions arise from stochastic initiation and domino-like DNA replication progression. Löb D; Lengert N; Chagin VO; Reinhart M; Casas-Delucchi CS; Cardoso MC; Drossel B Nat Commun; 2016 Apr; 7():11207. PubMed ID: 27052359 [TBL] [Abstract][Full Text] [Related]
35. cudaMMC: GPU-enhanced multiscale Monte Carlo chromatin 3D modelling. Wlasnowolski M; Grabowski P; Roszczyk D; Kaczmarski K; Plewczynski D Bioinformatics; 2023 Oct; 39(10):. PubMed ID: 37774005 [TBL] [Abstract][Full Text] [Related]
36. A-type lamins bind both hetero- and euchromatin, the latter being regulated by lamina-associated polypeptide 2 alpha. Gesson K; Rescheneder P; Skoruppa MP; von Haeseler A; Dechat T; Foisner R Genome Res; 2016 Apr; 26(4):462-73. PubMed ID: 26798136 [TBL] [Abstract][Full Text] [Related]