BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

249 related articles for article (PubMed ID: 32645685)

  • 21. BiPSTP: Sequence feature encoding method for identifying different RNA modifications with bidirectional position-specific trinucleotides propensities.
    Wang M; Ali H; Xu Y; Xie J; Xu S
    J Biol Chem; 2024 Apr; 300(4):107140. PubMed ID: 38447795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. iMethyl-STTNC: Identification of N
    Akbar S; Hayat M
    J Theor Biol; 2018 Oct; 455():205-211. PubMed ID: 30031793
    [TBL] [Abstract][Full Text] [Related]  

  • 23. m5C-Atlas: a comprehensive database for decoding and annotating the 5-methylcytosine (m5C) epitranscriptome.
    Ma J; Song B; Wei Z; Huang D; Zhang Y; Su J; de Magalhães JP; Rigden DJ; Meng J; Chen K
    Nucleic Acids Res; 2022 Jan; 50(D1):D196-D203. PubMed ID: 34986603
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Distinct 5-methylcytosine profiles of circular RNA in human hepatocellular carcinoma.
    He Y; Zhang Q; Zheng Q; Yu X; Guo W
    Am J Transl Res; 2020; 12(9):5719-5729. PubMed ID: 33042451
    [TBL] [Abstract][Full Text] [Related]  

  • 25. CirRNAPL: A web server for the identification of circRNA based on extreme learning machine.
    Niu M; Zhang J; Li Y; Wang C; Liu Z; Ding H; Zou Q; Ma Q
    Comput Struct Biotechnol J; 2020; 18():834-842. PubMed ID: 32308930
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Episo: quantitative estimation of RNA 5-methylcytosine at isoform level by high-throughput sequencing of RNA treated with bisulfite.
    Liu J; An Z; Luo J; Li J; Li F; Zhang Z
    Bioinformatics; 2020 Apr; 36(7):2033-2039. PubMed ID: 31794005
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sequence-based identification of recombination spots using pseudo nucleic acid representation and recursive feature extraction by linear kernel SVM.
    Li L; Yu S; Xiao W; Li Y; Huang L; Zheng X; Zhou S; Yang H
    BMC Bioinformatics; 2014 Nov; 15(1):340. PubMed ID: 25409550
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 4mCPred: machine learning methods for DNA N4-methylcytosine sites prediction.
    He W; Jia C; Zou Q
    Bioinformatics; 2019 Feb; 35(4):593-601. PubMed ID: 30052767
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Combining pseudo dinucleotide composition with the Z curve method to improve the accuracy of predicting DNA elements: a case study in recombination spots.
    Dong C; Yuan YZ; Zhang FZ; Hua HL; Ye YN; Labena AA; Lin H; Chen W; Guo FB
    Mol Biosyst; 2016 Aug; 12(9):2893-900. PubMed ID: 27410247
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting protein-binding regions in RNA using nucleotide profiles and compositions.
    Choi D; Park B; Chae H; Lee W; Han K
    BMC Syst Biol; 2017 Mar; 11(Suppl 2):16. PubMed ID: 28361677
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deciphering the vital roles and mechanism of m5C modification on RNA in cancers.
    Zheng L; Duan Y; Li M; Wei J; Xue C; Chen S; Wei Q; Tang F; Xiong W; Zhou M; Deng H
    Am J Cancer Res; 2023; 13(12):6125-6146. PubMed ID: 38187052
    [TBL] [Abstract][Full Text] [Related]  

  • 32. iTIS-PseKNC: Identification of Translation Initiation Site in human genes using pseudo k-tuple nucleotides composition.
    Kabir M; Iqbal M; Ahmad S; Hayat M
    Comput Biol Med; 2015 Nov; 66():252-7. PubMed ID: 26433457
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Accurate identification of RNA D modification using multiple features.
    Dou L; Zhou W; Zhang L; Xu L; Han K
    RNA Biol; 2021 Dec; 18(12):2236-2246. PubMed ID: 33729104
    [TBL] [Abstract][Full Text] [Related]  

  • 34. pDHS-SVM: A prediction method for plant DNase I hypersensitive sites based on support vector machine.
    Zhang S; Zhou Z; Chen X; Hu Y; Yang L
    J Theor Biol; 2017 Aug; 426():126-133. PubMed ID: 28552554
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A CNN based m5c RNA methylation predictor.
    Aslam I; Shah S; Jabeen S; ELAffendi M; A Abdel Latif A; Ul Haq N; Ali G
    Sci Rep; 2023 Dec; 13(1):21885. PubMed ID: 38081880
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural basis for substrate binding and catalytic mechanism of a human RNA:m5C methyltransferase NSun6.
    Liu RJ; Long T; Li J; Li H; Wang ED
    Nucleic Acids Res; 2017 Jun; 45(11):6684-6697. PubMed ID: 28531330
    [TBL] [Abstract][Full Text] [Related]  

  • 37. m6Aminer: Predicting the m6Am Sites on mRNA by Fusing Multiple Sequence-Derived Features into a CatBoost-Based Classifier.
    Liu Z; Lan P; Liu T; Liu X; Liu T
    Int J Mol Sci; 2023 Apr; 24(9):. PubMed ID: 37175594
    [TBL] [Abstract][Full Text] [Related]  

  • 38. iRNA5hmC: The First Predictor to Identify RNA 5-Hydroxymethylcytosine Modifications Using Machine Learning.
    Liu Y; Chen D; Su R; Chen W; Wei L
    Front Bioeng Biotechnol; 2020; 8():227. PubMed ID: 32296686
    [TBL] [Abstract][Full Text] [Related]  

  • 39. m7GPredictor: An improved machine learning-based model for predicting internal m7G modifications using sequence properties.
    Liu X; Liu Z; Mao X; Li Q
    Anal Biochem; 2020 Nov; 609():113905. PubMed ID: 32805275
    [TBL] [Abstract][Full Text] [Related]  

  • 40. XG-ac4C: identification of N4-acetylcytidine (ac4C) in mRNA using eXtreme gradient boosting with electron-ion interaction pseudopotentials.
    Alam W; Tayara H; Chong KT
    Sci Rep; 2020 Dec; 10(1):20942. PubMed ID: 33262392
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.