These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 32646035)

  • 1. Adsorption Capacity of Vitamin B
    Lupaşcu T; Petuhov O; Ţîmbaliuc N; Cibotaru S; Rotaru A
    Molecules; 2020 Jul; 25(13):. PubMed ID: 32646035
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sewage biogas efficient purification by means of lignocellulosic waste-based activated carbons.
    Santos-Clotas E; Cabrera-Codony A; Ruiz B; Fuente E; Martín MJ
    Bioresour Technol; 2019 Mar; 275():207-215. PubMed ID: 30590207
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adsorption of 2,4-dichlorophenoxyacetic acid and 4-chloro-2-metylphenoxyacetic acid onto activated carbons derived from various lignocellulosic materials.
    Doczekalska B; Kuśmierek K; Świątkowski A; Bartkowiak M
    J Environ Sci Health B; 2018 May; 53(5):290-297. PubMed ID: 29336683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adsorption of CO
    Acevedo S; Giraldo L; Moreno-Piraján JC
    ACS Omega; 2020 May; 5(18):10423-10432. PubMed ID: 32426599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physically activated charcoal from waste and low-cost biomass: Adsorptive and porosity studies.
    Kukučka MĐ; Kukučka Stojanović NM
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2017 Dec; 52(14):1341-1351. PubMed ID: 28952890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Use of activated carbons for detoxification of a lignocellulosic hydrolysate: Statistical optimisation.
    Arminda M; Josúe C; Cristina D; Fabiana S; Yolanda M
    J Environ Manage; 2021 Oct; 296():113320. PubMed ID: 34351292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of granular activated carbon from food-processing wastes (walnut shells and jujube seeds) and its adsorptive properties.
    Bae W; Kim J; Chung J
    J Air Waste Manag Assoc; 2014 Aug; 64(8):879-86. PubMed ID: 25185390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adsorption of Phenol on Commercial Activated Carbons: Modelling and Interpretation.
    Xie B; Qin J; Wang S; Li X; Sun H; Chen W
    Int J Environ Res Public Health; 2020 Jan; 17(3):. PubMed ID: 32012816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phenol removal onto novel activated carbons made from lignocellulosic precursors: influence of surface properties.
    Nabais JM; Gomes JA; Suhas ; Carrott PJ; Laginhas C; Roman S
    J Hazard Mater; 2009 Aug; 167(1-3):904-10. PubMed ID: 19233559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rhodamine B removal with activated carbons obtained from lignocellulosic waste.
    da Silva Lacerda V; López-Sotelo JB; Correa-Guimarães A; Hernández-Navarro S; Sánchez-Báscones M; Navas-Gracia LM; Martín-Ramos P; Martín-Gil J
    J Environ Manage; 2015 May; 155():67-76. PubMed ID: 25770964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lignin--from natural adsorbent to activated carbon: a review.
    Suhas ; Carrott PJ; Ribeiro Carrott MM
    Bioresour Technol; 2007 Sep; 98(12):2301-12. PubMed ID: 17055259
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Significance of Lignocellulosic Raw Materials on the Pore Structure of Activated Carbons Prepared by Steam Activation.
    Zhang L; Zuo S
    Molecules; 2024 Jul; 29(13):. PubMed ID: 38999149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Removal of chromium(VI) from aqueous solution by activated carbons: kinetic and equilibrium studies.
    Khezami L; Capart R
    J Hazard Mater; 2005 Aug; 123(1-3):223-31. PubMed ID: 15913888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adsorptive removal of phenol from contaminated water and wastewater by activated carbon, almond, and walnut shells charcoal.
    Pajooheshfar SP; Saeedi M
    Water Environ Res; 2009 Jun; 81(6):641-8. PubMed ID: 19601430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Select metal adsorption by activated carbon made from peanut shells.
    Wilson K; Yang H; Seo CW; Marshall WE
    Bioresour Technol; 2006 Dec; 97(18):2266-70. PubMed ID: 16364633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breakthrough CO₂ adsorption in bio-based activated carbons.
    Shahkarami S; Azargohar R; Dalai AK; Soltan J
    J Environ Sci (China); 2015 Aug; 34():68-76. PubMed ID: 26257348
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dye adsorption of mesoporous activated carbons produced from NaOH-pretreated rice husks.
    Lin L; Zhai SR; Xiao ZY; Song Y; An QD; Song XW
    Bioresour Technol; 2013 May; 136():437-43. PubMed ID: 23567714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elimination of textile dyes using activated carbons prepared from vegetable residues and their characterization.
    Peláez-Cid AA; Herrera-González AM; Salazar-Villanueva M; Bautista-Hernández A
    J Environ Manage; 2016 Oct; 181():269-278. PubMed ID: 27372249
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 2-Steps KOH activation of rice straw: an efficient method for preparing high-performance activated carbons.
    Basta AH; Fierro V; El-Saied H; Celzard A
    Bioresour Technol; 2009 Sep; 100(17):3941-7. PubMed ID: 19359164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of chlordecone desorption from activated carbons and subsequent dechlorination by reduced cobalamin.
    Ranguin R; Durimel A; Karioua R; Gaspard S
    Environ Sci Pollut Res Int; 2017 Nov; 24(33):25488-25499. PubMed ID: 28699005
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.