These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 32646213)

  • 1. Lyophilized Cell-Free Systems Display Tolerance to Organic Solvent Exposure.
    Lee MS; Raig RM; Gupta MK; Lux MW
    ACS Synth Biol; 2020 Aug; 9(8):1951-1957. PubMed ID: 32646213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-free protein synthesis enables one-pot cascade biotransformation in an aqueous-organic biphasic system.
    Liu WQ; Wu C; Jewett MC; Li J
    Biotechnol Bioeng; 2020 Dec; 117(12):4001-4008. PubMed ID: 32827317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Establishing a High-Yielding Cell-Free Protein Synthesis Platform Derived from Vibrio natriegens.
    Des Soye BJ; Davidson SR; Weinstock MT; Gibson DG; Jewett MC
    ACS Synth Biol; 2018 Sep; 7(9):2245-2255. PubMed ID: 30107122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Protection Role of Magnesium Ions on Coupled Transcription and Translation in Lyophilized Cell-Free System.
    Guo X; Zhu Y; Bai L; Yang D
    ACS Synth Biol; 2020 Apr; 9(4):856-863. PubMed ID: 32216368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The growing impact of lyophilized cell-free protein expression systems.
    Hunt JP; Yang SO; Wilding KM; Bundy BC
    Bioengineered; 2017 Jul; 8(4):325-330. PubMed ID: 27791452
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishing a
    Yang C; Yang M; Zhao W; Ding Y; Wang Y; Li J
    Molecules; 2022 Jul; 27(15):. PubMed ID: 35897861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impact of Porous Matrices and Concentration by Lyophilization on Cell-Free Expression.
    Blum SM; Lee MS; Mgboji GE; Funk VL; Beabout K; Harbaugh SV; Roth PA; Liem AT; Miklos AE; Emanuel PA; Walper SA; Chávez JL; Lux MW
    ACS Synth Biol; 2021 May; 10(5):1116-1131. PubMed ID: 33843211
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of Energy Metabolism through Growth Media Reformulation Enables a 24-Hour Workflow for Cell-Free Expression.
    Levine MZ; So B; Mullin AC; Fanter R; Dillard K; Watts KR; La Frano MR; Oza JP
    ACS Synth Biol; 2020 Oct; 9(10):2765-2774. PubMed ID: 32835484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Salt-activation of nonhydrolase enzymes for use in organic solvents.
    Morgan JA; Clark DS
    Biotechnol Bioeng; 2004 Feb; 85(4):456-9. PubMed ID: 14755564
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lyophilized Escherichia coli-based cell-free systems for robust, high-density, long-term storage.
    Smith MT; Berkheimer SD; Werner CJ; Bundy BC
    Biotechniques; 2014; 56(4):186-93. PubMed ID: 24724844
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Industrial potential of organic solvent tolerant bacteria.
    Sardessai YN; Bhosle S
    Biotechnol Prog; 2004; 20(3):655-60. PubMed ID: 15176865
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silk fibroin as an additive for cell-free protein synthesis.
    Lee MS; Hung CS; Phillips DA; Buck CC; Gupta MK; Lux MW
    Synth Syst Biotechnol; 2020 Sep; 5(3):145-154. PubMed ID: 32637668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Why do crown ethers activate enzymes in organic solvents?
    van Unen DJ; Engbersen JF; Reinhoudt DN
    Biotechnol Bioeng; 2002 Feb; 77(3):248-55. PubMed ID: 11753933
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unlocking Applications of Cell-Free Biotechnology through Enhanced Shelf Life and Productivity of
    Gregorio NE; Kao WY; Williams LC; Hight CM; Patel P; Watts KR; Oza JP
    ACS Synth Biol; 2020 Apr; 9(4):766-778. PubMed ID: 32083847
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Homogeneous biocatalysis in organic solvents and water-organic mixtures.
    Castro GR; Knubovets T
    Crit Rev Biotechnol; 2003; 23(3):195-231. PubMed ID: 14743990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Escherichia coli-Based Cell-Free Protein Synthesis: Protocols for a robust, flexible, and accessible platform technology.
    Levine MZ; Gregorio NE; Jewett MC; Watts KR; Oza JP
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30855561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solvent-free MALDI-MS: developmental improvements in the reliability and the potential of MALDI in the analysis of synthetic polymers and giant organic molecules.
    Trimpin S; Keune S; Räder HJ; Müllen K
    J Am Soc Mass Spectrom; 2006 May; 17(5):661-71. PubMed ID: 16540340
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biochemical Preparation of Cell Extract for Cell-Free Protein Synthesis without Physical Disruption.
    Fujiwara K; Doi N
    PLoS One; 2016; 11(4):e0154614. PubMed ID: 27128597
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microcompartmentalized Cell-Free Protein Synthesis in Hydrogel μ-Channels.
    Benítez-Mateos AI; Zeballos N; Comino N; Moreno de Redrojo L; Randelovic T; López-Gallego F
    ACS Synth Biol; 2020 Nov; 9(11):2971-2978. PubMed ID: 33170665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Development of revolutionary enzymatic reactions in organic solvents with molecular display].
    Ueda M
    Yakugaku Zasshi; 2010 Nov; 130(11):1479-85. PubMed ID: 21048406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.