These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Genome-wide identification and characterization of the NF-Y gene family in grape (vitis vinifera L.). Ren C; Zhang Z; Wang Y; Li S; Liang Z BMC Genomics; 2016 Aug; 17(1):605. PubMed ID: 27516172 [TBL] [Abstract][Full Text] [Related]
4. Genomic and transcriptomic analysis of the AP2/ERF superfamily in Vitis vinifera. Licausi F; Giorgi FM; Zenoni S; Osti F; Pezzotti M; Perata P BMC Genomics; 2010 Dec; 11():719. PubMed ID: 21171999 [TBL] [Abstract][Full Text] [Related]
5. A sense of place: transcriptomics identifies environmental signatures in Cabernet Sauvignon berry skins in the late stages of ripening. Cramer GR; Cochetel N; Ghan R; Destrac-Irvine A; Delrot S BMC Plant Biol; 2020 Jan; 20(1):41. PubMed ID: 31992236 [TBL] [Abstract][Full Text] [Related]
6. Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis. Ali MB; Howard S; Chen S; Wang Y; Yu O; Kovacs LG; Qiu W BMC Plant Biol; 2011 Jan; 11():7. PubMed ID: 21219654 [TBL] [Abstract][Full Text] [Related]
7. Inspection of the grapevine BURP superfamily highlights an expansion of RD22 genes with distinctive expression features in berry development and ABA-mediated stress responses. Matus JT; Aquea F; Espinoza C; Vega A; Cavallini E; Dal Santo S; Cañón P; Rodríguez-Hoces de la Guardia A; Serrano J; Tornielli GB; Arce-Johnson P PLoS One; 2014; 9(10):e110372. PubMed ID: 25330210 [TBL] [Abstract][Full Text] [Related]
8. Comprehensive characterization and RNA-Seq profiling of the HD-Zip transcription factor family in soybean (Glycine max) during dehydration and salt stress. Belamkar V; Weeks NT; Bharti AK; Farmer AD; Graham MA; Cannon SB BMC Genomics; 2014 Nov; 15():950. PubMed ID: 25362847 [TBL] [Abstract][Full Text] [Related]
9. Genome-wide identification and analysis of B-BOX gene family in grapevine reveal its potential functions in berry development. Wei H; Wang P; Chen J; Li C; Wang Y; Yuan Y; Fang J; Leng X BMC Plant Biol; 2020 Feb; 20(1):72. PubMed ID: 32054455 [TBL] [Abstract][Full Text] [Related]
11. Transcriptomic analysis of temporal shifts in berry development between two grapevine cultivars of the Pinot family reveals potential genes controlling ripening time. Theine J; Holtgräwe D; Herzog K; Schwander F; Kicherer A; Hausmann L; Viehöver P; Töpfer R; Weisshaar B BMC Plant Biol; 2021 Jul; 21(1):327. PubMed ID: 34233614 [TBL] [Abstract][Full Text] [Related]
12. Transcriptomics of the grape berry shrivel ripening disorder. Savoi S; Herrera JC; Forneck A; Griesser M Plant Mol Biol; 2019 Jun; 100(3):285-301. PubMed ID: 30941542 [TBL] [Abstract][Full Text] [Related]
13. Identification and expression analysis of ERECTA family genes in grape (Vitis vinifera L.). Liu M; Li W; Min Z; Cheng X; Fang Y Genes Genomics; 2019 Jun; 41(6):723-735. PubMed ID: 31004330 [TBL] [Abstract][Full Text] [Related]
14. Genome-wide identification and transcript analysis of TCP transcription factors in grapevine. Leng X; Wei H; Xu X; Ghuge SA; Jia D; Liu G; Wang Y; Yuan Y BMC Genomics; 2019 Oct; 20(1):786. PubMed ID: 31664916 [TBL] [Abstract][Full Text] [Related]
15. Identification of tissue-specific, abiotic stress-responsive gene expression patterns in wine grape (Vitis vinifera L.) based on curation and mining of large-scale EST data sets. Tillett RL; Ergül A; Albion RL; Schlauch KA; Cramer GR; Cushman JC BMC Plant Biol; 2011 May; 11():86. PubMed ID: 21592389 [TBL] [Abstract][Full Text] [Related]
16. Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (vitis vinifera) fruit. Rienth M; Torregrosa L; Luchaire N; Chatbanyong R; Lecourieux D; Kelly MT; Romieu C BMC Plant Biol; 2014 Apr; 14():108. PubMed ID: 24774299 [TBL] [Abstract][Full Text] [Related]
17. The common transcriptional subnetworks of the grape berry skin in the late stages of ripening. Ghan R; Petereit J; Tillett RL; Schlauch KA; Toubiana D; Fait A; Cramer GR BMC Plant Biol; 2017 May; 17(1):94. PubMed ID: 28558655 [TBL] [Abstract][Full Text] [Related]
18. Grapevine NAC1 transcription factor as a convergent node in developmental processes, abiotic stresses, and necrotrophic/biotrophic pathogen tolerance. Le Hénanff G; Profizi C; Courteaux B; Rabenoelina F; Gérard C; Clément C; Baillieul F; Cordelier S; Dhondt-Cordelier S J Exp Bot; 2013 Nov; 64(16):4877-93. PubMed ID: 24043850 [TBL] [Abstract][Full Text] [Related]
19. Identification, characterization, and expression analysis of calmodulin and calmodulin-like genes in grapevine (Vitis vinifera) reveal likely roles in stress responses. Vandelle E; Vannozzi A; Wong D; Danzi D; Digby AM; Dal Santo S; Astegno A Plant Physiol Biochem; 2018 Aug; 129():221-237. PubMed ID: 29908490 [TBL] [Abstract][Full Text] [Related]
20. Genome-wide identification of WRKY family genes and their response to cold stress in Vitis vinifera. Wang L; Zhu W; Fang L; Sun X; Su L; Liang Z; Wang N; Londo JP; Li S; Xin H BMC Plant Biol; 2014 Apr; 14():103. PubMed ID: 24755338 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]