BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 32646377)

  • 1. Identification of candidate genes for milk production traits by RNA sequencing on bovine liver at different lactation stages.
    Li Q; Liang R; Li Y; Gao Y; Li Q; Sun D; Li J
    BMC Genet; 2020 Jul; 21(1):72. PubMed ID: 32646377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptional profiling of mammary gland in Holstein cows with extremely different milk protein and fat percentage using RNA sequencing.
    Cui X; Hou Y; Yang S; Xie Y; Zhang S; Zhang Y; Zhang Q; Lu X; Liu GE; Sun D
    BMC Genomics; 2014 Mar; 15():226. PubMed ID: 24655368
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic Effects of
    Han B; Yuan Y; Liang R; Li Y; Liu L; Sun D
    Genes (Basel); 2019 Apr; 10(4):. PubMed ID: 30986988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Whole blood transcriptional profiling comparison between different milk yield of Chinese Holstein cows using RNA-seq data.
    Bai X; Zheng Z; Liu B; Ji X; Bai Y; Zhang W
    BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):512. PubMed ID: 27557137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential expression of genes in milk of dairy cattle during lactation.
    Yang J; Jiang J; Liu X; Wang H; Guo G; Zhang Q; Jiang L
    Anim Genet; 2016 Apr; 47(2):174-80. PubMed ID: 26692495
    [TBL] [Abstract][Full Text] [Related]  

  • 6. RNA-Seq reveals 10 novel promising candidate genes affecting milk protein concentration in the Chinese Holstein population.
    Li C; Cai W; Zhou C; Yin H; Zhang Z; Loor JJ; Sun D; Zhang Q; Liu J; Zhang S
    Sci Rep; 2016 Jun; 6():26813. PubMed ID: 27254118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single Nucleotide Polymorphisms of
    Han B; Yuan Y; Li Y; Liu L; Sun D
    Genes (Basel); 2019 Jun; 10(6):. PubMed ID: 31200542
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of whole blood gene expression and splicing quantitative trait loci during early to mid-lactation of dairy cattle.
    Tang Y; Zhang J; Li W; Liu X; Chen S; Mi S; Yang J; Teng J; Fang L; Yu Y
    BMC Genomics; 2024 May; 25(1):445. PubMed ID: 38711039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinguishing pleiotropy from linked QTL between milk production traits and mastitis resistance in Nordic Holstein cattle.
    Cai Z; Dusza M; Guldbrandtsen B; Lund MS; Sahana G
    Genet Sel Evol; 2020 Apr; 52(1):19. PubMed ID: 32264818
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of Liver Proteome and Identification of Critical Proteins Affecting Milk Fat, Protein, and Lactose Metabolism in Dariy Cattle with iTRAQ.
    Xu L; Shi L; Liu L; Liang R; Li Q; Li J; Han B; Sun D
    Proteomics; 2019 Jun; 19(12):e1800387. PubMed ID: 30903674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Confirmed effects of candidate variants for milk production, udder health, and udder morphology in dairy cattle.
    Tribout T; Croiseau P; Lefebvre R; Barbat A; Boussaha M; Fritz S; Boichard D; Hoze C; Sanchez MP
    Genet Sel Evol; 2020 Oct; 52(1):55. PubMed ID: 32998688
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeted imputation of sequence variants and gene expression profiling identifies twelve candidate genes associated with lactation volume, composition and calving interval in dairy cattle.
    Raven LA; Cocks BG; Kemper KE; Chamberlain AJ; Vander Jagt CJ; Goddard ME; Hayes BJ
    Mamm Genome; 2016 Feb; 27(1-2):81-97. PubMed ID: 26613780
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrative analysis of genome-wide DNA methylation and gene expression profiles reveals important epigenetic genes related to milk production traits in dairy cattle.
    Dong W; Yang J; Zhang Y; Liu S; Ning C; Ding X; Wang W; Zhang Y; Zhang Q; Jiang L
    J Anim Breed Genet; 2021 Sep; 138(5):562-573. PubMed ID: 33620112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of quantitative trait loci influencing dairy traits using a model for longitudinal data.
    Rodriguez-Zas SL; Southey BR; Heyen DW; Lewin HA
    J Dairy Sci; 2002 Oct; 85(10):2681-91. PubMed ID: 12416823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-wide association study for genotype by lactation stage interaction of milk production traits in dairy cattle.
    Lu H; Wang Y; Bovenhuis H
    J Dairy Sci; 2020 Jun; 103(6):5234-5245. PubMed ID: 32229127
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of Genetic Effects of
    Peng P; Liu Y; Zheng W; Han B; Wang K; Sun D
    Genes (Basel); 2022 Dec; 13(12):. PubMed ID: 36553659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Determination of genetic effects of ATF3 and CDKN1A genes on milk yield and compositions in Chinese Holstein population.
    Han B; Liang W; Liu L; Li Y; Sun D
    BMC Genet; 2017 May; 18(1):47. PubMed ID: 28525989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating Sequence-based GWAS and RNA-Seq Provides Novel Insights into the Genetic Basis of Mastitis and Milk Production in Dairy Cattle.
    Fang L; Sahana G; Su G; Yu Y; Zhang S; Lund MS; Sørensen P
    Sci Rep; 2017 Mar; 7():45560. PubMed ID: 28358110
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of dietary protein amount and rumen undegradability on intake, peripartum liver triglyceride, plasma metabolites, and milk production in transition dairy cattle.
    Greenfield RB; Cecava MJ; Johnson TR; Donkin SS
    J Dairy Sci; 2000 Apr; 83(4):703-10. PubMed ID: 10791786
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genome-wide association studies for genetic effects that change during lactation in dairy cattle.
    Lu H; Bovenhuis H
    J Dairy Sci; 2019 Aug; 102(8):7263-7276. PubMed ID: 31155265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.