These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
244 related articles for article (PubMed ID: 32646377)
1. Identification of candidate genes for milk production traits by RNA sequencing on bovine liver at different lactation stages. Li Q; Liang R; Li Y; Gao Y; Li Q; Sun D; Li J BMC Genet; 2020 Jul; 21(1):72. PubMed ID: 32646377 [TBL] [Abstract][Full Text] [Related]
2. Transcriptional profiling of mammary gland in Holstein cows with extremely different milk protein and fat percentage using RNA sequencing. Cui X; Hou Y; Yang S; Xie Y; Zhang S; Zhang Y; Zhang Q; Lu X; Liu GE; Sun D BMC Genomics; 2014 Mar; 15():226. PubMed ID: 24655368 [TBL] [Abstract][Full Text] [Related]
3. Genetic Effects of Han B; Yuan Y; Liang R; Li Y; Liu L; Sun D Genes (Basel); 2019 Apr; 10(4):. PubMed ID: 30986988 [TBL] [Abstract][Full Text] [Related]
4. Whole blood transcriptional profiling comparison between different milk yield of Chinese Holstein cows using RNA-seq data. Bai X; Zheng Z; Liu B; Ji X; Bai Y; Zhang W BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):512. PubMed ID: 27557137 [TBL] [Abstract][Full Text] [Related]
5. Differential expression of genes in milk of dairy cattle during lactation. Yang J; Jiang J; Liu X; Wang H; Guo G; Zhang Q; Jiang L Anim Genet; 2016 Apr; 47(2):174-80. PubMed ID: 26692495 [TBL] [Abstract][Full Text] [Related]
6. RNA-Seq reveals 10 novel promising candidate genes affecting milk protein concentration in the Chinese Holstein population. Li C; Cai W; Zhou C; Yin H; Zhang Z; Loor JJ; Sun D; Zhang Q; Liu J; Zhang S Sci Rep; 2016 Jun; 6():26813. PubMed ID: 27254118 [TBL] [Abstract][Full Text] [Related]
7. Identification and characterization of whole blood gene expression and splicing quantitative trait loci during early to mid-lactation of dairy cattle. Tang Y; Zhang J; Li W; Liu X; Chen S; Mi S; Yang J; Teng J; Fang L; Yu Y BMC Genomics; 2024 May; 25(1):445. PubMed ID: 38711039 [TBL] [Abstract][Full Text] [Related]
8. Distinguishing pleiotropy from linked QTL between milk production traits and mastitis resistance in Nordic Holstein cattle. Cai Z; Dusza M; Guldbrandtsen B; Lund MS; Sahana G Genet Sel Evol; 2020 Apr; 52(1):19. PubMed ID: 32264818 [TBL] [Abstract][Full Text] [Related]
9. Analysis of Liver Proteome and Identification of Critical Proteins Affecting Milk Fat, Protein, and Lactose Metabolism in Dariy Cattle with iTRAQ. Xu L; Shi L; Liu L; Liang R; Li Q; Li J; Han B; Sun D Proteomics; 2019 Jun; 19(12):e1800387. PubMed ID: 30903674 [TBL] [Abstract][Full Text] [Related]
10. Confirmed effects of candidate variants for milk production, udder health, and udder morphology in dairy cattle. Tribout T; Croiseau P; Lefebvre R; Barbat A; Boussaha M; Fritz S; Boichard D; Hoze C; Sanchez MP Genet Sel Evol; 2020 Oct; 52(1):55. PubMed ID: 32998688 [TBL] [Abstract][Full Text] [Related]
11. Targeted imputation of sequence variants and gene expression profiling identifies twelve candidate genes associated with lactation volume, composition and calving interval in dairy cattle. Raven LA; Cocks BG; Kemper KE; Chamberlain AJ; Vander Jagt CJ; Goddard ME; Hayes BJ Mamm Genome; 2016 Feb; 27(1-2):81-97. PubMed ID: 26613780 [TBL] [Abstract][Full Text] [Related]
12. Single Nucleotide Polymorphisms of Han B; Yuan Y; Li Y; Liu L; Sun D Genes (Basel); 2019 Jun; 10(6):. PubMed ID: 31200542 [TBL] [Abstract][Full Text] [Related]
13. Integrative analysis of genome-wide DNA methylation and gene expression profiles reveals important epigenetic genes related to milk production traits in dairy cattle. Dong W; Yang J; Zhang Y; Liu S; Ning C; Ding X; Wang W; Zhang Y; Zhang Q; Jiang L J Anim Breed Genet; 2021 Sep; 138(5):562-573. PubMed ID: 33620112 [TBL] [Abstract][Full Text] [Related]
14. Detection of quantitative trait loci influencing dairy traits using a model for longitudinal data. Rodriguez-Zas SL; Southey BR; Heyen DW; Lewin HA J Dairy Sci; 2002 Oct; 85(10):2681-91. PubMed ID: 12416823 [TBL] [Abstract][Full Text] [Related]
15. Genome-wide association study for genotype by lactation stage interaction of milk production traits in dairy cattle. Lu H; Wang Y; Bovenhuis H J Dairy Sci; 2020 Jun; 103(6):5234-5245. PubMed ID: 32229127 [TBL] [Abstract][Full Text] [Related]
16. Identification of Genetic Effects of Peng P; Liu Y; Zheng W; Han B; Wang K; Sun D Genes (Basel); 2022 Dec; 13(12):. PubMed ID: 36553659 [TBL] [Abstract][Full Text] [Related]
17. Determination of genetic effects of ATF3 and CDKN1A genes on milk yield and compositions in Chinese Holstein population. Han B; Liang W; Liu L; Li Y; Sun D BMC Genet; 2017 May; 18(1):47. PubMed ID: 28525989 [TBL] [Abstract][Full Text] [Related]
18. Integrating Sequence-based GWAS and RNA-Seq Provides Novel Insights into the Genetic Basis of Mastitis and Milk Production in Dairy Cattle. Fang L; Sahana G; Su G; Yu Y; Zhang S; Lund MS; Sørensen P Sci Rep; 2017 Mar; 7():45560. PubMed ID: 28358110 [TBL] [Abstract][Full Text] [Related]
19. Impact of dietary protein amount and rumen undegradability on intake, peripartum liver triglyceride, plasma metabolites, and milk production in transition dairy cattle. Greenfield RB; Cecava MJ; Johnson TR; Donkin SS J Dairy Sci; 2000 Apr; 83(4):703-10. PubMed ID: 10791786 [TBL] [Abstract][Full Text] [Related]
20. Genome-wide association studies for genetic effects that change during lactation in dairy cattle. Lu H; Bovenhuis H J Dairy Sci; 2019 Aug; 102(8):7263-7276. PubMed ID: 31155265 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]