BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 32646758)

  • 1. Relationship between inflammation and metabolic regulation of energy expenditure by GLP-1 in critically ill children.
    Zaher S; Branco R; Meyer R; White D; Ridout J; Pathan N
    Clin Nutr; 2021 Feb; 40(2):632-637. PubMed ID: 32646758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Determination of resting energy expenditure in critically ill children experiencing mechanical ventilation].
    Dong HB; Yang YW; Wang Y; Hong L
    Zhonghua Er Ke Za Zhi; 2012 Nov; 50(11):847-50. PubMed ID: 23302617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy expenditure in critically ill children.
    Framson CM; LeLeiko NS; Dallal GE; Roubenoff R; Snelling LK; Dwyer JT
    Pediatr Crit Care Med; 2007 May; 8(3):264-7. PubMed ID: 17417117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy Balance in Critically Ill Children With Severe Sepsis Using Indirect Calorimetry: A Prospective Cohort Study.
    Ismail J; Bansal A; Jayashree M; Nallasamy K; Attri SV
    J Pediatr Gastroenterol Nutr; 2019 Jun; 68(6):868-873. PubMed ID: 30889134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can energy intake alter clinical and hospital outcomes in PICU?
    Larsen BMK; Beggs MR; Leong AY; Kang SH; Persad R; Garcia Guerra G
    Clin Nutr ESPEN; 2018 Apr; 24():41-46. PubMed ID: 29576361
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicted versus measured energy expenditure by continuous, online indirect calorimetry in ventilated, critically ill children during the early postinjury period.
    Vazquez Martinez JL; Martinez-Romillo PD; Diez Sebastian J; Ruza Tarrio F
    Pediatr Crit Care Med; 2004 Jan; 5(1):19-27. PubMed ID: 14697104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physical activity as a determinant of total energy expenditure in critically ill children.
    van der Kuip M; de Meer K; Westerterp KR; Gemke RJ
    Clin Nutr; 2007 Dec; 26(6):744-51. PubMed ID: 17949862
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy imbalance and the risk of overfeeding in critically ill children.
    Mehta NM; Bechard LJ; Dolan M; Ariagno K; Jiang H; Duggan C
    Pediatr Crit Care Med; 2011 Jul; 12(4):398-405. PubMed ID: 20975614
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A critical view of the use of predictive energy equations for the identification of hypermetabolism in motor neuron disease: A pilot study.
    Roscoe S; Skinner E; Kabucho Kibirige E; Childs C; Weekes CE; Wootton S; Allen S; McDermott C; Stavroulakis T
    Clin Nutr ESPEN; 2023 Oct; 57():739-748. PubMed ID: 37739732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of Predictive Equations Specifically Developed to Estimate Resting Energy Expenditure in Ventilated Critically Ill Children.
    Jotterand Chaparro C; Taffé P; Moullet C; Laure Depeyre J; Longchamp D; Perez MH; Cotting J
    J Pediatr; 2017 May; 184():220-226.e5. PubMed ID: 28108105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Resting energy expenditure in severely burned children: analysis of agreement between indirect calorimetry and prediction equations using the Bland-Altman method.
    Suman OE; Mlcak RP; Chinkes DL; Herndon DN
    Burns; 2006 May; 32(3):335-42. PubMed ID: 16529869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Estimation of Resting Energy Expenditure Using Predictive Equations in Critically Ill Children: Results of a Systematic Review.
    Jotterand Chaparro C; Moullet C; Taffé P; Laure Depeyre J; Perez MH; Longchamp D; Cotting J
    JPEN J Parenter Enteral Nutr; 2018 Aug; 42(6):976-986. PubMed ID: 29603276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of ventilator-derived VCO
    Kerklaan D; Augustus ME; Hulst JM; van Rosmalen J; Verbruggen SCAT; Joosten KFM
    Clin Nutr; 2017 Apr; 36(2):452-457. PubMed ID: 26803170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Resting energy expenditure in children in a pediatric intensive care unit: comparison of Harris-Benedict and Talbot predictions with indirect calorimetry values.
    Coss-Bu JA; Jefferson LS; Walding D; David Y; Smith EO; Klish WJ
    Am J Clin Nutr; 1998 Jan; 67(1):74-80. PubMed ID: 9440378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Resting Energy Expenditure in the Critically Ill and Healthy Elderly-A Retrospective Matched Cohort Study.
    Lindner M; Geisler C; Rembarz K; Hummitzsch L; Radke DI; Schulte DM; Müller MJ; Bosy-Westphal A; Elke G
    Nutrients; 2023 Jan; 15(2):. PubMed ID: 36678174
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The challenge of developing a new predictive formula to estimate energy requirements in ventilated critically ill children.
    Meyer R; Kulinskaya E; Briassoulis G; Taylor RM; Cooper M; Pathan N; Habibi P
    Nutr Clin Pract; 2012 Oct; 27(5):669-76. PubMed ID: 22677483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Can energy expenditure be predicted in critically ill children?
    Taylor RM; Cheeseman P; Preedy V; Baker AJ; Grimble G
    Pediatr Crit Care Med; 2003 Apr; 4(2):176-80. PubMed ID: 12749648
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Assessment of energy metabolism and nutritional supply in children with mechanical ventilation].
    Ji J; Qian S; Yan J
    Zhonghua Er Ke Za Zhi; 2016 Jan; 54(1):28-32. PubMed ID: 26791920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determining the accuracy of predictive energy expenditure (PREE) equations in severely obese adolescents.
    Steinberg A; Manlhiot C; Cordeiro K; Chapman K; Pencharz PB; McCrindle BW; Hamilton JK
    Clin Nutr; 2017 Aug; 36(4):1158-1164. PubMed ID: 27612920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy expenditure in children with severe head injury: lack of agreement between measured and estimated energy expenditure.
    Havalad S; Quaid MA; Sapiega V
    Nutr Clin Pract; 2006 Apr; 21(2):175-81. PubMed ID: 16556928
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.