These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 32647063)
1. Niche expansion for phototrophic sulfur bacteria at the Proterozoic-Phanerozoic transition. Cui X; Liu XL; Shen G; Ma J; Husain F; Rocher D; Zumberge JE; Bryant DA; Summons RE Proc Natl Acad Sci U S A; 2020 Jul; 117(30):17599-17606. PubMed ID: 32647063 [TBL] [Abstract][Full Text] [Related]
2. Carotenoid biomarkers in Namibian shelf sediments: Anoxygenic photosynthesis during sulfide eruptions in the Benguela Upwelling System. Ma J; French KL; Cui X; Bryant DA; Summons RE Proc Natl Acad Sci U S A; 2021 Jul; 118(29):. PubMed ID: 34272281 [TBL] [Abstract][Full Text] [Related]
3. Assessing the distribution of sedimentary C40 carotenoids through time. French KL; Rocher D; Zumberge JE; Summons RE Geobiology; 2015 Mar; 13(2):139-51. PubMed ID: 25631735 [TBL] [Abstract][Full Text] [Related]
4. Biomarker stratigraphy in the Athel Trough of the South Oman Salt Basin at the Ediacaran-Cambrian Boundary. Roussel A; Cui X; Summons RE Geobiology; 2020 Nov; 18(6):663-681. PubMed ID: 32643313 [TBL] [Abstract][Full Text] [Related]
5. Carotenoid biomarkers as an imperfect reflection of the anoxygenic phototrophic community in meromictic Fayetteville Green Lake. Meyer KM; Macalady JL; Fulton JM; Kump LR; Schaperdoth I; Freeman KH Geobiology; 2011 Jul; 9(4):321-9. PubMed ID: 21682840 [TBL] [Abstract][Full Text] [Related]
6. The taphonomic fate of isorenieratene in Lower Jurassic shales-controlled by iron? Reinhardt M; Duda JP; Blumenberg M; Ostertag-Henning C; Reitner J; Heim C; Thiel V Geobiology; 2018 May; 16(3):237-251. PubMed ID: 29569335 [TBL] [Abstract][Full Text] [Related]
7. A molecular and carbon isotopic study towards the origin and diagenetic fate of diaromatic carotenoids. Hartgers WA; Sinninghe Damsté JS; Requejo AG; Allan J; Hayes JM; Ling Y; Xie TM; Primack J; De Leeuw JW Org Geochem; 1994 Dec; 22(3-5):703-25. PubMed ID: 11539138 [TBL] [Abstract][Full Text] [Related]
8. Insights into chemotaxonomic composition and carbon cycling of phototrophic communities in an artesian sulfur-rich spring (Zodletone, Oklahoma, USA), a possible analog for ancient microbial mat systems. Bühring SI; Sievert SM; Jonkers HM; Ertefai T; Elshahed MS; Krumholz LR; Hinrichs KU Geobiology; 2011 Mar; 9(2):166-79. PubMed ID: 21244620 [TBL] [Abstract][Full Text] [Related]
9. Seeing green bacteria in a new light: genomics-enabled studies of the photosynthetic apparatus in green sulfur bacteria and filamentous anoxygenic phototrophic bacteria. Frigaard NU; Bryant DA Arch Microbiol; 2004 Oct; 182(4):265-76. PubMed ID: 15340781 [TBL] [Abstract][Full Text] [Related]
10. Association of a new type of gliding, filamentous, purple phototrophic bacterium inside bundles of Microcoleus chthonoplastes in hypersaline cyanobacterial mats. D'Amelio ED; Cohen Y; Des Marais DJ Arch Microbiol; 1987; 147():213-20. PubMed ID: 11542090 [TBL] [Abstract][Full Text] [Related]
11. [Pigments of green sulfur bacteria isolated from reservoirs of Iavoriv sulfur deposit]. Baran IM; Hudz' SP; Hnatush SO; Fedorovych AM Mikrobiol Z; 2004; 66(1):10-8. PubMed ID: 15104050 [TBL] [Abstract][Full Text] [Related]
12. Regulation of Carotenoid Biosynthesis in Photosynthetic Organs. Llorente B Subcell Biochem; 2016; 79():141-60. PubMed ID: 27485221 [TBL] [Abstract][Full Text] [Related]
13. Dating phototrophic microbial lineages with reticulate gene histories. Magnabosco C; Moore KR; Wolfe JM; Fournier GP Geobiology; 2018 Mar; 16(2):179-189. PubMed ID: 29384268 [TBL] [Abstract][Full Text] [Related]
14. An isotopic biogeochemical study of Neoproterozoic and Early Cambrian sediments from the Centralian Superbasin, Australia. Logan GA; Summons RE; Hayes JM Geochim Cosmochim Acta; 1997; 61(24):5391-409. PubMed ID: 11540731 [TBL] [Abstract][Full Text] [Related]
15. The carotenoids of photosynthetic bacteria. I. The nature of the carotenoid pigments in a halophilic photosynthetic sulphur bacterium (chromatium spp.). GOODWIN TW; LAND DG Arch Mikrobiol; 1956; 24(3):305-12. PubMed ID: 13340831 [No Abstract] [Full Text] [Related]
17. Possible poriferan body fossils in early Neoproterozoic microbial reefs. Turner EC Nature; 2021 Aug; 596(7870):87-91. PubMed ID: 34321662 [TBL] [Abstract][Full Text] [Related]
18. The role of biology in planetary evolution: cyanobacterial primary production in low-oxygen Proterozoic oceans. Hamilton TL; Bryant DA; Macalady JL Environ Microbiol; 2016 Feb; 18(2):325-40. PubMed ID: 26549614 [TBL] [Abstract][Full Text] [Related]
19. Evolution of cellular metabolism and the rise of a globally productive biosphere. Braakman R Free Radic Biol Med; 2019 Aug; 140():172-187. PubMed ID: 31082508 [TBL] [Abstract][Full Text] [Related]
20. Thiocapsa marina sp. nov., a novel, okenone-containing, purple sulfur bacterium isolated from brackish coastal and marine environments. Caumette P; Guyoneaud R; Imhoff JF; Süling J; Gorlenko V Int J Syst Evol Microbiol; 2004 Jul; 54(Pt 4):1031-1036. PubMed ID: 15280266 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]