These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32647192)

  • 21. Stop CRYing! Inhibition of cryptochrome function by small proteins.
    Kruusvee V; Toft AM; Aguida B; Ahmad M; Wenkel S
    Biochem Soc Trans; 2022 Apr; 50(2):773-782. PubMed ID: 35311888
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The CNT1 Domain of Arabidopsis CRY1 Alone Is Sufficient to Mediate Blue Light Inhibition of Hypocotyl Elongation.
    He SB; Wang WX; Zhang JY; Xu F; Lian HL; Li L; Yang HQ
    Mol Plant; 2015 May; 8(5):822-5. PubMed ID: 25721730
    [No Abstract]   [Full Text] [Related]  

  • 23. Blue-light-independent activity of Arabidopsis cryptochromes in the regulation of steady-state levels of protein and mRNA expression.
    Yang YJ; Zuo ZC; Zhao XY; Li X; Klejnot J; Li Y; Chen P; Liang SP; Yu XH; Liu XM; Lin CT
    Mol Plant; 2008 Jan; 1(1):167-77. PubMed ID: 20031923
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Universally Conserved Residues Are Not Universally Required for Stable Protein Expression or Functions of Cryptochromes.
    Liu H; Su T; He W; Wang Q; Lin C
    Mol Biol Evol; 2020 Feb; 37(2):327-340. PubMed ID: 31550045
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Photooligomerization Determines Photosensitivity and Photoreactivity of Plant Cryptochromes.
    Liu Q; Su T; He W; Ren H; Liu S; Chen Y; Gao L; Hu X; Lu H; Cao S; Huang Y; Wang X; Wang Q; Lin C
    Mol Plant; 2020 Mar; 13(3):398-413. PubMed ID: 31953223
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Protoplast System for Studying Blue-Light-Dependent Formation of Cryptochrome Photobody.
    Lyu X; Li H; Liu B
    Methods Mol Biol; 2021; 2297():105-113. PubMed ID: 33656674
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Near-Null Magnetic Field Suppresses Fruit Growth in Arabidopsis.
    Xu C; Feng S; Yu Y; Zhang Y; Wei S
    Bioelectromagnetics; 2021 Oct; 42(7):593-602. PubMed ID: 34289513
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of weak static magnetic fields on the gene expression of seedlings of Arabidopsis thaliana.
    Dhiman SK; Galland P
    J Plant Physiol; 2018 Dec; 231():9-18. PubMed ID: 30199755
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Blue-light induced biosynthesis of ROS contributes to the signaling mechanism of Arabidopsis cryptochrome.
    El-Esawi M; Arthaut LD; Jourdan N; d'Harlingue A; Link J; Martino CF; Ahmad M
    Sci Rep; 2017 Oct; 7(1):13875. PubMed ID: 29066723
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Radical-pair-based magnetoreception in birds: radio-frequency experiments and the role of cryptochrome.
    Nießner C; Winklhofer M
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2017 Jul; 203(6-7):499-507. PubMed ID: 28612234
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Regulation of Arabidopsis cryptochrome 2 by blue-light-dependent phosphorylation.
    Shalitin D; Yang H; Mockler TC; Maymon M; Guo H; Whitelam GC; Lin C
    Nature; 2002 Jun; 417(6890):763-7. PubMed ID: 12066190
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CRYPTOCHROME 1 is implicated in promoting R protein-mediated plant resistance to Pseudomonas syringae in Arabidopsis.
    Wu L; Yang HQ
    Mol Plant; 2010 May; 3(3):539-48. PubMed ID: 20053798
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Magnetic field effects in Arabidopsis thaliana cryptochrome-1.
    Solov'yov IA; Chandler DE; Schulten K
    Biophys J; 2007 Apr; 92(8):2711-26. PubMed ID: 17259272
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cryptochrome mediated magnetic sensitivity in Arabidopsis occurs independently of light-induced electron transfer to the flavin.
    Hammad M; Albaqami M; Pooam M; Kernevez E; Witczak J; Ritz T; Martino C; Ahmad M
    Photochem Photobiol Sci; 2020 Mar; 19(3):341-352. PubMed ID: 32065192
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Blue-light dependent ROS formation by Arabidopsis cryptochrome-2 may contribute toward its signaling role.
    Jourdan N; Martino CF; El-Esawi M; Witczak J; Bouchet PE; d'Harlingue A; Ahmad M
    Plant Signal Behav; 2015; 10(8):e1042647. PubMed ID: 26179959
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Zebra finches have a light-dependent magnetic compass similar to migratory birds.
    Pinzon-Rodriguez A; Muheim R
    J Exp Biol; 2017 Apr; 220(Pt 7):1202-1209. PubMed ID: 28356366
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of weak static magnetic fields on the development of seedlings of Arabidopsis thaliana.
    Dhiman SK; Wu F; Galland P
    Protoplasma; 2023 May; 260(3):767-786. PubMed ID: 36129584
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Action spectrum for cryptochrome-dependent hypocotyl growth inhibition in Arabidopsis.
    Ahmad M; Grancher N; Heil M; Black RC; Giovani B; Galland P; Lardemer D
    Plant Physiol; 2002 Jun; 129(2):774-85. PubMed ID: 12068118
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Upper bound for broadband radiofrequency field disruption of magnetic compass orientation in night-migratory songbirds.
    Leberecht B; Wong SY; Satish B; Döge S; Hindman J; Venkatraman L; Apte S; Haase K; Musielak I; Dautaj G; Solov'yov IA; Winklhofer M; Mouritsen H; Hore PJ
    Proc Natl Acad Sci U S A; 2023 Jul; 120(28):e2301153120. PubMed ID: 37399422
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Hyperactivity of the
    Orth C; Niemann N; Hennig L; Essen LO; Batschauer A
    J Biol Chem; 2017 Aug; 292(31):12906-12920. PubMed ID: 28634231
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.