These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

601 related articles for article (PubMed ID: 32647635)

  • 1. Dual Vascular Endothelial Growth Factor Receptor and Fibroblast Growth Factor Receptor Inhibition Elicits Antitumor Immunity and Enhances Programmed Cell Death-1 Checkpoint Blockade in Hepatocellular Carcinoma.
    Deng H; Kan A; Lyu N; Mu L; Han Y; Liu L; Zhang Y; Duan Y; Liao S; Li S; Xie Q; Gao T; Li Y; Zhang Z; Zhao M
    Liver Cancer; 2020 Jun; 9(3):338-357. PubMed ID: 32647635
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunomodulatory activity of lenvatinib contributes to antitumor activity in the Hepa1-6 hepatocellular carcinoma model.
    Kimura T; Kato Y; Ozawa Y; Kodama K; Ito J; Ichikawa K; Yamada K; Hori Y; Tabata K; Takase K; Matsui J; Funahashi Y; Nomoto K
    Cancer Sci; 2018 Dec; 109(12):3993-4002. PubMed ID: 30447042
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fibroblast growth factor inhibition by molecular-targeted agents mitigates immunosuppressive tissue microenvironment in hepatocellular carcinoma.
    Suzuki H; Iwamoto H; Tanaka T; Sakaue T; Imamura Y; Masuda A; Nakamura T; Koga H; Hoshida Y; Kawaguchi T
    Hepatol Int; 2024 Apr; 18(2):610-622. PubMed ID: 37864726
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of SIRT7 Increases the Efficacy of Checkpoint Inhibitor via MEF2D Regulation of Programmed Cell Death 1 Ligand 1 in Hepatocellular Carcinoma Cells.
    Xiang J; Zhang N; Sun H; Su L; Zhang C; Xu H; Feng J; Wang M; Chen J; Liu L; Shan J; Shen J; Yang Z; Wang G; Zhou H; Prieto J; Ávila MA; Liu C; Qian C
    Gastroenterology; 2020 Feb; 158(3):664-678.e24. PubMed ID: 31678303
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inhibition of FGFR Reactivates IFNγ Signaling in Tumor Cells to Enhance the Combined Antitumor Activity of Lenvatinib with Anti-PD-1 Antibodies.
    Adachi Y; Kamiyama H; Ichikawa K; Fukushima S; Ozawa Y; Yamaguchi S; Goda S; Kimura T; Kodama K; Matsuki M; Miyano SW; Yokoi A; Kato Y; Funahashi Y
    Cancer Res; 2022 Jan; 82(2):292-306. PubMed ID: 34753772
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lenvatinib plus anti-PD-1 antibody combination treatment activates CD8+ T cells through reduction of tumor-associated macrophage and activation of the interferon pathway.
    Kato Y; Tabata K; Kimura T; Yachie-Kinoshita A; Ozawa Y; Yamada K; Ito J; Tachino S; Hori Y; Matsuki M; Matsuoka Y; Ghosh S; Kitano H; Nomoto K; Matsui J; Funahashi Y
    PLoS One; 2019; 14(2):e0212513. PubMed ID: 30811474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual Programmed Death Receptor-1 and Vascular Endothelial Growth Factor Receptor-2 Blockade Promotes Vascular Normalization and Enhances Antitumor Immune Responses in Hepatocellular Carcinoma.
    Shigeta K; Datta M; Hato T; Kitahara S; Chen IX; Matsui A; Kikuchi H; Mamessier E; Aoki S; Ramjiawan RR; Ochiai H; Bardeesy N; Huang P; Cobbold M; Zhu AX; Jain RK; Duda DG
    Hepatology; 2020 Apr; 71(4):1247-1261. PubMed ID: 31378984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lenvatinib Targets FGF Receptor 4 to Enhance Antitumor Immune Response of Anti-Programmed Cell Death-1 in HCC.
    Yi C; Chen L; Lin Z; Liu L; Shao W; Zhang R; Lin J; Zhang J; Zhu W; Jia H; Qin L; Lu L; Chen J
    Hepatology; 2021 Nov; 74(5):2544-2560. PubMed ID: 34036623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tumor-derived lactate inhibit the efficacy of lenvatinib through regulating PD-L1 expression on neutrophil in hepatocellular carcinoma.
    Deng H; Kan A; Lyu N; He M; Huang X; Qiao S; Li S; Lu W; Xie Q; Chen H; Lai J; Chen Q; Jiang X; Liu S; Zhang Z; Zhao M
    J Immunother Cancer; 2021 Jun; 9(6):. PubMed ID: 34168004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Huaier improves the efficacy of anti-PD-L1 Ab in the treatment of hepatocellular carcinoma by regulating tumor immune microenvironment.
    Li H; You J; Wei Y; Zheng L; Yang J; Xu J; Li Y; Li Z; Yang X; Yi C
    Phytomedicine; 2024 Jan; 123():155189. PubMed ID: 37984124
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chidamide plus Tyrosine Kinase Inhibitor Remodel the Tumor Immune Microenvironment and Reduce Tumor Progression When Combined with Immune Checkpoint Inhibitor in Naïve and Anti-PD-1 Resistant CT26-Bearing Mice.
    Chen JS; Hsieh YC; Chou CH; Wu YH; Yang MH; Chu SH; Chao YS; Chen CN
    Int J Mol Sci; 2022 Sep; 23(18):. PubMed ID: 36142591
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lenvatinib Plus Anti-PD-1 Combination Therapy for Advanced Cancers: Defining Mechanisms of Resistance in an Inducible Transgenic Model of Thyroid Cancer.
    Bertol BC; Bales ES; Calhoun JD; Mayberry A; Ledezma ML; Sams SB; Orlicky DJ; Donadi EA; Haugen BR; French JD
    Thyroid; 2022 Feb; 32(2):153-163. PubMed ID: 34641722
    [No Abstract]   [Full Text] [Related]  

  • 13. CXCR4 inhibition in tumor microenvironment facilitates anti-programmed death receptor-1 immunotherapy in sorafenib-treated hepatocellular carcinoma in mice.
    Chen Y; Ramjiawan RR; Reiberger T; Ng MR; Hato T; Huang Y; Ochiai H; Kitahara S; Unan EC; Reddy TP; Fan C; Huang P; Bardeesy N; Zhu AX; Jain RK; Duda DG
    Hepatology; 2015 May; 61(5):1591-602. PubMed ID: 25529917
    [TBL] [Abstract][Full Text] [Related]  

  • 14. siRNA targeting PD-L1 delivered with attenuated Salmonella enhanced the anti-tumor effect of lenvatinib on mice bearing Hepatocellular carcinoma.
    Chen P; Li Y; Wei P; Liang L; Li B; Cao Y; Han X; Wang Y; Duan X; Jia H; Zhao T; Ren J
    Int Immunopharmacol; 2022 Oct; 111():109127. PubMed ID: 35964407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined TIM-3 and PD-1 blockade restrains hepatocellular carcinoma development by facilitating CD4+ and CD8+ T cell-mediated antitumor immune responses.
    Zhang XS; Zhou HC; Wei P; Chen L; Ma WH; Ding L; Liang SC; Chen BD
    World J Gastrointest Oncol; 2023 Dec; 15(12):2138-2149. PubMed ID: 38173440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of Curcumin on multi-level immune checkpoint blockade and T cell dysfunction in head and neck cancer.
    Liu L; Lim MA; Jung SN; Oh C; Won HR; Jin YL; Piao Y; Kim HJ; Chang JW; Koo BS
    Phytomedicine; 2021 Nov; 92():153758. PubMed ID: 34592487
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ILT4 inhibition prevents TAM- and dysfunctional T cell-mediated immunosuppression and enhances the efficacy of anti-PD-L1 therapy in NSCLC with EGFR activation.
    Chen X; Gao A; Zhang F; Yang Z; Wang S; Fang Y; Li J; Wang J; Shi W; Wang L; Zheng Y; Sun Y
    Theranostics; 2021; 11(7):3392-3416. PubMed ID: 33537094
    [No Abstract]   [Full Text] [Related]  

  • 18. MZF1 promotes tumour progression and resistance to anti-PD-L1 antibody treatment in hepatocellular carcinoma.
    Kan A; Liu S; He M; Wen D; Deng H; Huang L; Lai Z; Huang Y; Shi M
    JHEP Rep; 2024 Jan; 6(1):100939. PubMed ID: 38074509
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incidence of Hyper Progressive Disease in Combination Immunotherapy and Anti-Programmed Cell Death Protein 1/Programmed Death-Ligand 1 Monotherapy for Unresectable Hepatocellular Carcinoma.
    Aoki T; Kudo M; Ueshima K; Morita M; Chishina H; Takita M; Hagiwara S; Ida H; Minami Y; Tsurusaki M; Nishida N
    Liver Cancer; 2024 Feb; 13(1):56-69. PubMed ID: 38344443
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic efficacy of simultaneous anti-TGF-β/VEGF bispecific antibody and PD-1 blockade in cancer therapy.
    Niu M; Yi M; Wu Y; Lyu L; He Q; Yang R; Zeng L; Shi J; Zhang J; Zhou P; Zhang T; Mei Q; Chu Q; Wu K
    J Hematol Oncol; 2023 Aug; 16(1):94. PubMed ID: 37573354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 31.