BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 32647974)

  • 1. Injectable Hydrogel Containing Tauroursodeoxycholic Acid for Anti-neuroinflammatory Therapy After Spinal Cord Injury in Rats.
    Han GH; Kim SJ; Ko WK; Lee D; Lee JS; Nah H; Han IB; Sohn S
    Mol Neurobiol; 2020 Oct; 57(10):4007-4017. PubMed ID: 32647974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ursodeoxycholic Acid Inhibits Inflammatory Responses and Promotes Functional Recovery After Spinal Cord Injury in Rats.
    Ko WK; Kim SJ; Jo MJ; Choi H; Lee D; Kwon IK; Lee SH; Han IB; Sohn S
    Mol Neurobiol; 2019 Jan; 56(1):267-277. PubMed ID: 29691718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anti-inflammatory effect of Tauroursodeoxycholic acid in RAW 264.7 macrophages, Bone marrow-derived macrophages, BV2 microglial cells, and spinal cord injury.
    Kim SJ; Ko WK; Jo MJ; Arai Y; Choi H; Kumar H; Han IB; Sohn S
    Sci Rep; 2018 Feb; 8(1):3176. PubMed ID: 29453346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transplantation of tauroursodeoxycholic acid-inducing M2-phenotype macrophages promotes an anti-neuroinflammatory effect and functional recovery after spinal cord injury in rats.
    Han GH; Kim SJ; Ko WK; Lee D; Han IB; Sheen SH; Hong JB; Sohn S
    Cell Prolif; 2021 Jun; 54(6):e13050. PubMed ID: 33960559
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuroprotective effects and impact on caspase-12 expression of tauroursodeoxycholic acid after acute spinal cord injury in rats.
    Dong Y; Miao L; Hei L; Lin L; Ding H
    Int J Clin Exp Pathol; 2015; 8(12):15871-8. PubMed ID: 26884858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tauroursodeoxycholic acid alleviates secondary injury in the spinal cord via up-regulation of CIBZ gene.
    Zhang Z; Chen J; Chen F; Yu D; Li R; Lv C; Wang H; Li H; Li J; Cai Y
    Cell Stress Chaperones; 2018 Jul; 23(4):551-560. PubMed ID: 29151236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tauroursodeoxycholic acid and secondary damage after spinal cord injury in rats.
    Colak A; Kelten B; Sağmanligil A; Akdemir O; Karaoğlan A; Sahan E; Celik O; Barut S
    J Clin Neurosci; 2008 Jun; 15(6):665-71. PubMed ID: 18343118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An anti-inflammatory peptide and brain-derived neurotrophic factor-modified hyaluronan-methylcellulose hydrogel promotes nerve regeneration in rats with spinal cord injury.
    He Z; Zang H; Zhu L; Huang K; Yi T; Zhang S; Cheng S
    Int J Nanomedicine; 2019; 14():721-732. PubMed ID: 30705588
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of curcumin on the inflammatory reaction and functional recovery after spinal cord injury in a hyperglycemic rat model.
    Lee YS; Cho DC; Kim CH; Han I; Gil EY; Kim KT
    Spine J; 2019 Dec; 19(12):2025-2039. PubMed ID: 31421247
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tauroursodeoxycholic acid alleviates secondary injury in spinal cord injury mice by reducing oxidative stress, apoptosis, and inflammatory response.
    Hou Y; Luan J; Huang T; Deng T; Li X; Xiao Z; Zhan J; Luo D; Hou Y; Xu L; Lin D
    J Neuroinflammation; 2021 Sep; 18(1):216. PubMed ID: 34544428
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Erythropoietin-Induced Autophagy Protects Against Spinal Cord Injury and Improves Neurological Function via the Extracellular-Regulated Protein Kinase Signaling Pathway.
    Zhong L; Zhang H; Ding ZF; Li J; Lv JW; Pan ZJ; Xu DX; Yin ZS
    Mol Neurobiol; 2020 Oct; 57(10):3993-4006. PubMed ID: 32647973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protective effect of tauroursodeoxycholic acid on the autophagy of nerve cells in rats with acute spinal cord injury.
    Miao L; Dong Y; Zhou FB; Chang YL; Suo ZG; Ding HQ
    Eur Rev Med Pharmacol Sci; 2018 Feb; 22(4):1133-1141. PubMed ID: 29509267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyaluronic acid scaffold has a neuroprotective effect in hemisection spinal cord injury.
    Kushchayev SV; Giers MB; Hom Eng D; Martirosyan NL; Eschbacher JM; Mortazavi MM; Theodore N; Panitch A; Preul MC
    J Neurosurg Spine; 2016 Jul; 25(1):114-24. PubMed ID: 26943251
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An injectable, biodegradable hydrogel for trophic factor delivery enhances axonal rewiring and improves performance after spinal cord injury.
    Piantino J; Burdick JA; Goldberg D; Langer R; Benowitz LI
    Exp Neurol; 2006 Oct; 201(2):359-67. PubMed ID: 16764857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Injection of Hydrogels Embedding Gold Nanoparticles for Local Therapy after Spinal Cord Injury.
    Ko WK; Lee SJ; Kim SJ; Han GH; Han IB; Hong JB; Sheen SH; Sohn S
    Biomacromolecules; 2021 Jul; 22(7):2887-2901. PubMed ID: 34097404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor on glial scar formation after spinal cord injury in rats.
    Chung J; Kim MH; Yoon YJ; Kim KH; Park SR; Choi BH
    J Neurosurg Spine; 2014 Dec; 21(6):966-73. PubMed ID: 25279652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resveratrol improves the prognosis of rats after spinal cord injury by inhibiting mitogen-activated protein kinases signaling pathway.
    Kan S; Liu C; Zhao X; Feng S; Zhu H; Ma B; Zhou M; Fu X; Hu W; Zhu R
    Sci Rep; 2023 Nov; 13(1):19723. PubMed ID: 37957210
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of the effect of tranilast on rats with spinal cord injury.
    Hanada M; Tsutsumi K; Arima H; Shinjo R; Sugiura Y; Imagama S; Ishiguro N; Matsuyama Y
    J Neurol Sci; 2014 Nov; 346(1-2):209-15. PubMed ID: 25194634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Injectable hydroxyphenyl derivative of hyaluronic acid hydrogel modified with RGD as scaffold for spinal cord injury repair.
    Zaviskova K; Tukmachev D; Dubisova J; Vackova I; Hejcl A; Bystronova J; Pravda M; Scigalkova I; Sulakova R; Velebny V; Wolfova L; Kubinova S
    J Biomed Mater Res A; 2018 Apr; 106(4):1129-1140. PubMed ID: 29266693
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Type I interferon inhibits astrocytic gliosis and promotes functional recovery after spinal cord injury by deactivation of the MEK/ERK pathway.
    Ito M; Natsume A; Takeuchi H; Shimato S; Ohno M; Wakabayashi T; Yoshida J
    J Neurotrauma; 2009 Jan; 26(1):41-53. PubMed ID: 19196180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.