These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 32648111)

  • 1. Automated classification of diabetic retinopathy through reliable feature selection.
    Gayathri S; Gopi VP; Palanisamy P
    Phys Eng Sci Med; 2020 Sep; 43(3):927-945. PubMed ID: 32648111
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diabetic retinopathy classification based on multipath CNN and machine learning classifiers.
    Gayathri S; Gopi VP; Palanisamy P
    Phys Eng Sci Med; 2021 Sep; 44(3):639-653. PubMed ID: 34033015
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel four-step feature selection technique for diabetic retinopathy grading.
    Jagan Mohan N; Murugan R; Goel T; Mirjalili S; Roy P
    Phys Eng Sci Med; 2021 Dec; 44(4):1351-1366. PubMed ID: 34748191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Retinal image analysis for disease screening through local tetra patterns.
    Porwal P; Pachade S; Kokare M; Giancardo L; Mériaudeau F
    Comput Biol Med; 2018 Nov; 102():200-210. PubMed ID: 30308336
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Machine Learning Ensemble Classifier for Early Prediction of Diabetic Retinopathy.
    S K S; P A
    J Med Syst; 2017 Nov; 41(12):201. PubMed ID: 29124453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An ensemble classification of exudates in color fundus images using an evolutionary algorithm based optimal features selection.
    Ullah H; Saba T; Islam N; Abbas N; Rehman A; Mehmood Z; Anjum A
    Microsc Res Tech; 2019 Apr; 82(4):361-372. PubMed ID: 30677193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feature extraction and selection for the automatic detection of hard exudates in retinal images.
    Garcia M; Hornero R; Sánchez CI; López MI; Diez A
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4969-72. PubMed ID: 18003122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fast and Robust Exudate Detection in Retinal Fundus Images Using Extreme Learning Machine Autoencoders and Modified KAZE Features.
    Mohan NJ; Murugan R; Goel T; Roy P
    J Digit Imaging; 2022 Jun; 35(3):496-513. PubMed ID: 35141807
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Automated detection of diabetic retinopathy in fundus images using fused features.
    Bibi I; Mir J; Raja G
    Phys Eng Sci Med; 2020 Dec; 43(4):1253-1264. PubMed ID: 32955686
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel image recuperation approach for diagnosing and ranking retinopathy disease level using diabetic fundus image.
    Krishnamoorthy S; Alli P
    PLoS One; 2015; 10(5):e0125542. PubMed ID: 25974230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Classification of large-scale fundus image data sets: a cloud-computing framework.
    Roychowdhury S
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3256-3259. PubMed ID: 28269002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DREAM: diabetic retinopathy analysis using machine learning.
    Roychowdhury S; Koozekanani DD; Parhi KK
    IEEE J Biomed Health Inform; 2014 Sep; 18(5):1717-28. PubMed ID: 25192577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MediDRNet: Tackling category imbalance in diabetic retinopathy classification with dual-branch learning and prototypical contrastive learning.
    Teng S; Wang B; Yang F; Yi X; Zhang X; Sun Y
    Comput Methods Programs Biomed; 2024 Aug; 253():108230. PubMed ID: 38810377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Feature Selection and Parameters Optimization of Support Vector Machines Based on Hybrid Glowworm Swarm Optimization for Classification of Diabetic Retinopathy.
    Karthikeyan R; Alli P
    J Med Syst; 2018 Sep; 42(10):195. PubMed ID: 30209620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated lesion detectors in retinal fundus images.
    Figueiredo IN; Kumar S; Oliveira CM; Ramos JD; Engquist B
    Comput Biol Med; 2015 Nov; 66():47-65. PubMed ID: 26378502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Holoentropy enabled-decision tree for automatic classification of diabetic retinopathy using retinal fundus images.
    Mane VM; Jadhav DV
    Biomed Tech (Berl); 2017 May; 62(3):321-332. PubMed ID: 27514073
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An interpretable multiple-instance approach for the detection of referable diabetic retinopathy in fundus images.
    Papadopoulos A; Topouzis F; Delopoulos A
    Sci Rep; 2021 Jul; 11(1):14326. PubMed ID: 34253799
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep CNN with Hybrid Binary Local Search and Particle Swarm Optimizer for Exudates Classification from Fundus Images.
    Ramya J; Rajakumar MP; Maheswari BU
    J Digit Imaging; 2022 Feb; 35(1):56-67. PubMed ID: 34997375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gray wolf optimization-extreme learning machine approach for diabetic retinopathy detection.
    Albadr MAA; Ayob M; Tiun S; Al-Dhief FT; Hasan MK
    Front Public Health; 2022; 10():925901. PubMed ID: 35979449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Convolutional Neural Network-Based Early Automated Detection of Diabetic Retinopathy Using Fundus Image.
    Xu K; Feng D; Mi H
    Molecules; 2017 Nov; 22(12):. PubMed ID: 29168750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.