These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 32648129)

  • 1. The electronic structure of van der Waals heterostructures formed by the nanoflakes of black phosphorene with those of graphene and haeckelites: their complexes with Li.
    Narváez WEV; Rodríguez LDS; de la Garza CGV; Fomina L; Fomine S
    J Mol Model; 2020 Jul; 26(8):204. PubMed ID: 32648129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complexes of Li, Na, and Mg with 2D allotropies of second and third period: a theoretical study.
    Narváez WEV; de la Garza CGV; Rodríguez LDS; Fomine S
    J Mol Model; 2021 Dec; 28(1):22. PubMed ID: 34966959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel 2D allotropic forms and nanoflakes of silicon, phosphorus, and germanium: a computational study.
    de la Garza CGV; Narváez WEV; Rodríguez LDS; Fomine S
    J Mol Model; 2021 Apr; 27(5):142. PubMed ID: 33909167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electronic structure of hybrid pentaheptite carbon nanoflakes containing boron-nitrogen motifs.
    de la Garza CGV; Narváez WEV; Rodríguez LDS; Fomine S
    J Mol Model; 2020 Mar; 26(4):72. PubMed ID: 32146588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Blue Phosphorene/MS2 (M = Nb, Ta) Heterostructures As Promising Flexible Anodes for Lithium-Ion Batteries.
    Peng Q; Wang Z; Sa B; Wu B; Sun Z
    ACS Appl Mater Interfaces; 2016 Jun; 8(21):13449-57. PubMed ID: 27165567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Black phosphorene/monolayer transition-metal dichalcogenides as two dimensional van der Waals heterostructures: a first-principles study.
    You B; Wang X; Zheng Z; Mi W
    Phys Chem Chem Phys; 2016 Mar; 18(10):7381-8. PubMed ID: 26899350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reactivity of phosphorene with a 3d element trioxide (CrO
    Rubio-Pereda P; Cocoletzi GH
    J Mol Model; 2017 Feb; 23(2):49. PubMed ID: 28161777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermal stability and thermal conductivity of phosphorene in phosphorene/graphene van der Waals heterostructures.
    Pei QX; Zhang X; Ding Z; Zhang YY; Zhang YW
    Phys Chem Chem Phys; 2017 Jul; 19(26):17180-17186. PubMed ID: 28638905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Black phosphorene/blue phosphorene van der Waals heterostructure: a potential anode material for lithium-ion batteries.
    Muhammad N; Muzaffar MU; Ding ZJ
    Phys Chem Chem Phys; 2021 Aug; 23(32):17392-17401. PubMed ID: 34350913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced nonlinear optical response of graphene-based nanoflake van der Waals heterostructures.
    Kaur S; Pandey R; Karna SP
    RSC Adv; 2021 Jan; 11(10):5590-5600. PubMed ID: 35423093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Layer-dependent electronic properties of phosphorene-like materials and phosphorene-based van der Waals heterostructures.
    Huang YC; Chen X; Wang C; Peng L; Qian Q; Wang SF
    Nanoscale; 2017 Jun; 9(25):8616-8622. PubMed ID: 28489111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Van der Waals heterostructure of phosphorene and graphene: tuning the Schottky barrier and doping by electrostatic gating.
    Padilha JE; Fazzio A; da Silva AJ
    Phys Rev Lett; 2015 Feb; 114(6):066803. PubMed ID: 25723237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First principles calculations of solid-state thermionic transport in layered van der Waals heterostructures.
    Wang X; Zebarjadi M; Esfarjani K
    Nanoscale; 2016 Aug; 8(31):14695-704. PubMed ID: 27314610
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-Principles Study of Phosphorene and Graphene Heterostructure as Anode Materials for Rechargeable Li Batteries.
    Guo GC; Wang D; Wei XL; Zhang Q; Liu H; Lau WM; Liu LM
    J Phys Chem Lett; 2015 Dec; 6(24):5002-8. PubMed ID: 26623923
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic Properties of h-BCN-Blue Phosphorene van der Waals Heterostructures.
    Kaewmaraya T; Srepusharawoot P; Hussian T; Amornkitbamrung V
    Chemphyschem; 2018 Mar; 19(5):612-618. PubMed ID: 29210157
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tuning the Carrier Confinement in GeS/Phosphorene van der Waals Heterostructures.
    Wang C; Peng L; Qian Q; Du J; Wang S; Huang Y
    Small; 2018 Mar; 14(10):. PubMed ID: 29323456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative study of density functionals for the description of lithium-graphite intercalation compounds.
    Lenchuk O; Adelhelm P; Mollenhauer D
    J Comput Chem; 2019 Oct; 40(27):2400-2412. PubMed ID: 31254474
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of superconductivity in Li, K, Ca, and Sr-intercalated blue phosphorene bilayer using first-principle calculations.
    Er-Rahmany S; Loulidi M; El Kenz A; Benyoussef A; Balli M; Azzouz M
    J Phys Condens Matter; 2023 Feb; 35(13):. PubMed ID: 36693282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electronic properties of blue phosphorene/graphene and blue phosphorene/graphene-like gallium nitride heterostructures.
    Sun M; Chou JP; Yu J; Tang W
    Phys Chem Chem Phys; 2017 Jul; 19(26):17324-17330. PubMed ID: 28644492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic structures and enhanced optical properties of blue phosphorene/transition metal dichalcogenides van der Waals heterostructures.
    Peng Q; Wang Z; Sa B; Wu B; Sun Z
    Sci Rep; 2016 Aug; 6():31994. PubMed ID: 27553787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.