These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 32648187)
1. LC-MS/MS-based quantitative proteomic and phosphoproteomic analysis of CHO-K1 cells adapted to growth in glutamine-free media. Kaushik P; Curell RV; Henry M; Barron N; Meleady P Biotechnol Lett; 2020 Dec; 42(12):2523-2536. PubMed ID: 32648187 [TBL] [Abstract][Full Text] [Related]
2. The Expression Pattern of the Phosphoproteome Is Significantly Changed During the Growth Phases of Recombinant CHO Cell Culture. Kaushik P; Henry M; Clynes M; Meleady P Biotechnol J; 2018 Oct; 13(10):e1700221. PubMed ID: 30076757 [TBL] [Abstract][Full Text] [Related]
3. Phosphopeptide Enrichment and LC-MS/MS Analysis to Study the Phosphoproteome of Recombinant Chinese Hamster Ovary Cells. Henry M; Coleman O; Prashant ; Clynes M; Meleady P Methods Mol Biol; 2017; 1603():195-208. PubMed ID: 28493132 [TBL] [Abstract][Full Text] [Related]
4. Differential Phosphoproteomic Analysis of Recombinant Chinese Hamster Ovary Cells Following Temperature Shift. Henry M; Power M; Kaushik P; Coleman O; Clynes M; Meleady P J Proteome Res; 2017 Jul; 16(7):2339-2358. PubMed ID: 28509555 [TBL] [Abstract][Full Text] [Related]
5. Multiple reaction monitoring targeted LC-MS analysis of potential cell death marker proteins for increased bioprocess control. Albrecht S; Kaisermayer C; Reinhart D; Ambrose M; Kunert R; Lindeberg A; Bones J Anal Bioanal Chem; 2018 May; 410(13):3197-3207. PubMed ID: 29607450 [TBL] [Abstract][Full Text] [Related]
6. Mapping the molecular basis for growth related phenotypes in industrial producer CHO cell lines using differential proteomic analysis. Bryan L; Henry M; Kelly RM; Frye CC; Osborne MD; Clynes M; Meleady P BMC Biotechnol; 2021 Jul; 21(1):43. PubMed ID: 34301236 [TBL] [Abstract][Full Text] [Related]
7. Improvements in single-use bioreactor film material composition leads to robust and reliable Chinese hamster ovary cell performance. Kelly PS; Dorival-García N; Paré S; Carillo S; Ta C; Alarcon Miguez A; Coleman O; Harper E; Shannon M; Henry M; Connolly L; Clynes M; Meleady P; Bones J; Barron N Biotechnol Prog; 2019 Jul; 35(4):e2824. PubMed ID: 31017345 [TBL] [Abstract][Full Text] [Related]
8. CHO-K1 host cells adapted to growth in glutamine-free medium by FACS-assisted evolution. Bort JA; Stern B; Borth N Biotechnol J; 2010 Oct; 5(10):1090-7. PubMed ID: 20931603 [TBL] [Abstract][Full Text] [Related]
9. Clonal variations in CHO IGF signaling investigated by SILAC-based phosphoproteomics and LFQ-MS. Schelletter L; Albaum S; Walter S; Noll T; Hoffrogge R Appl Microbiol Biotechnol; 2019 Oct; 103(19):8127-8143. PubMed ID: 31420692 [TBL] [Abstract][Full Text] [Related]
10. A quantitative proteomic analysis of cellular responses to high glucose media in Chinese hamster ovary cells. Liu Z; Dai S; Bones J; Ray S; Cha S; Karger BL; Li JJ; Wilson L; Hinckle G; Rossomando A Biotechnol Prog; 2015; 31(4):1026-38. PubMed ID: 25857574 [TBL] [Abstract][Full Text] [Related]
11. Lessons from the Hamster: Cricetulus griseus Tissue and CHO Cell Line Proteome Comparison. Heffner KM; Hizal DB; Yerganian GS; Kumar A; Can Ö; O'Meally R; Cole R; Chaerkady R; Wu H; Bowen MA; Betenbaugh MJ J Proteome Res; 2017 Oct; 16(10):3672-3687. PubMed ID: 28876938 [TBL] [Abstract][Full Text] [Related]
12. Elucidation of the CHO Super-Ome (CHO-SO) by Proteoinformatics. Kumar A; Baycin-Hizal D; Wolozny D; Pedersen LE; Lewis NE; Heffner K; Chaerkady R; Cole RN; Shiloach J; Zhang H; Bowen MA; Betenbaugh MJ J Proteome Res; 2015 Nov; 14(11):4687-703. PubMed ID: 26418914 [TBL] [Abstract][Full Text] [Related]
13. Filter-Aided Sample Preparation (FASP) for Improved Proteome Analysis of Recombinant Chinese Hamster Ovary Cells. Coleman O; Henry M; Clynes M; Meleady P Methods Mol Biol; 2017; 1603():187-194. PubMed ID: 28493131 [TBL] [Abstract][Full Text] [Related]
14. Proteomic profiling of secreted proteins from CHO cells using Surface-Enhanced Laser desorption ionization time-of-flight mass spectrometry. Kumar N; Maurya P; Gammell P; Dowling P; Clynes M; Meleady P Biotechnol Prog; 2008; 24(1):273-8. PubMed ID: 18163642 [TBL] [Abstract][Full Text] [Related]
16. Comprehensive Glycoproteomic Analysis of Chinese Hamster Ovary Cells. Yang G; Hu Y; Sun S; Ouyang C; Yang W; Wang Q; Betenbaugh M; Zhang H Anal Chem; 2018 Dec; 90(24):14294-14302. PubMed ID: 30457839 [TBL] [Abstract][Full Text] [Related]
17. A proteomic study of cMyc improvement of CHO culture. Kuystermans D; Dunn MJ; Al-Rubeai M BMC Biotechnol; 2010 Mar; 10():25. PubMed ID: 20307306 [TBL] [Abstract][Full Text] [Related]
18. Integrated miRNA, mRNA and protein expression analysis reveals the role of post-transcriptional regulation in controlling CHO cell growth rate. Clarke C; Henry M; Doolan P; Kelly S; Aherne S; Sanchez N; Kelly P; Kinsella P; Breen L; Madden SF; Zhang L; Leonard M; Clynes M; Meleady P; Barron N BMC Genomics; 2012 Nov; 13():656. PubMed ID: 23170974 [TBL] [Abstract][Full Text] [Related]
19. Proteomic understanding of intracellular responses of recombinant Chinese hamster ovary cells cultivated in serum-free medium supplemented with hydrolysates. Kim JY; Kim YG; Han YK; Choi HS; Kim YH; Lee GM Appl Microbiol Biotechnol; 2011 Mar; 89(6):1917-28. PubMed ID: 21286710 [TBL] [Abstract][Full Text] [Related]
20. Comprehensive assessment of host cell protein expression after extended culture and bioreactor production of CHO cell lines. Hamaker NK; Min L; Lee KH Biotechnol Bioeng; 2022 Aug; 119(8):2221-2238. PubMed ID: 35508759 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]