These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 32648285)
1. Phenotypic and physiological responses to salt exposure in Sorghum reveal diversity among domesticated landraces. Henderson AN; Crim PM; Cumming JR; Hawkins JS Am J Bot; 2020 Jul; 107(7):983-992. PubMed ID: 32648285 [TBL] [Abstract][Full Text] [Related]
2. Comparative physiological and transcriptomic analysis reveals salinity tolerance mechanisms in Sorghum bicolor (L.) Moench. Ukwatta J; Pabuayon ICM; Park J; Chen J; Chai X; Zhang H; Zhu JK; Xin Z; Shi H Planta; 2021 Oct; 254(5):98. PubMed ID: 34657208 [TBL] [Abstract][Full Text] [Related]
3. Heterogeneous root zone salinity mitigates salt injury to Sorghum bicolor (L.) Moench in a split-root system. Zhang H; Wang R; Wang H; Liu B; Xu M; Guan Y; Yang Y; Qin L; Chen E; Li F; Huang R; Zhou Y PLoS One; 2019; 14(12):e0227020. PubMed ID: 31887166 [TBL] [Abstract][Full Text] [Related]
4. Understanding salinity stress responses in sorghum: exploring genotype variability and salt tolerance mechanisms. Rajabi Dehnavi A; Zahedi M; Piernik A Front Plant Sci; 2023; 14():1296286. PubMed ID: 38269142 [TBL] [Abstract][Full Text] [Related]
5. Effect of salt tolerance on biomass production in a large population of sorghum accessions. Yamazaki K; Ishimori M; Kajiya-Kanegae H; Takanashi H; Fujimoto M; Yoneda JI; Yano K; Koshiba T; Tanaka R; Iwata H; Tokunaga T; Tsutsumi N; Fujiwara T Breed Sci; 2020 Apr; 70(2):167-175. PubMed ID: 32523398 [TBL] [Abstract][Full Text] [Related]
6. External potassium (K(+)) application improves salinity tolerance by promoting Na(+)-exclusion, K(+)-accumulation and osmotic adjustment in contrasting peanut cultivars. Chakraborty K; Bhaduri D; Meena HN; Kalariya K Plant Physiol Biochem; 2016 Jun; 103():143-53. PubMed ID: 26994338 [TBL] [Abstract][Full Text] [Related]
7. Sorghum under saline conditions: responses, tolerance mechanisms, and management strategies. Mansour MMF; Emam MM; Salama KHA; Morsy AA Planta; 2021 Jul; 254(2):24. PubMed ID: 34224010 [TBL] [Abstract][Full Text] [Related]
8. Metabolic changes associated with differential salt tolerance in sorghum genotypes. de Oliveira DF; Lopes LS; Gomes-Filho E Planta; 2020 Aug; 252(3):34. PubMed ID: 32761417 [TBL] [Abstract][Full Text] [Related]
9. Exploring novel genetic sources of salinity tolerance in rice through molecular and physiological characterization. Rahman MA; Thomson MJ; Shah-E-Alam M; de Ocampo M; Egdane J; Ismail AM Ann Bot; 2016 May; 117(6):1083-97. PubMed ID: 27063367 [TBL] [Abstract][Full Text] [Related]
10. SbHKT1;4, a member of the high-affinity potassium transporter gene family from Sorghum bicolor, functions to maintain optimal Na⁺ /K⁺ balance under Na⁺ stress. Wang TT; Ren ZJ; Liu ZQ; Feng X; Guo RQ; Li BG; Li LG; Jing HC J Integr Plant Biol; 2014 Mar; 56(3):315-32. PubMed ID: 24325391 [TBL] [Abstract][Full Text] [Related]
11. Discerning morpho-anatomical, physiological and molecular multiformity in cultivated and wild genotypes of lentil with reconciliation to salinity stress. Singh D; Singh CK; Kumari S; Singh Tomar RS; Karwa S; Singh R; Singh RB; Sarkar SK; Pal M PLoS One; 2017; 12(5):e0177465. PubMed ID: 28542267 [TBL] [Abstract][Full Text] [Related]
12. Physio-chemical and co-expression network analysis associated with salt stress in sorghum. Choi S; Kang Y; Lee S; Jeon DH; Seo S; Lee TH; Kim C Front Biosci (Landmark Ed); 2022 Feb; 27(2):55. PubMed ID: 35226998 [TBL] [Abstract][Full Text] [Related]
13. An insight from tolerance to salinity stress in halophyte Portulaca oleracea L.: Physio-morphological, biochemical and molecular responses. Sdouga D; Ben Amor F; Ghribi S; Kabtni S; Tebini M; Branca F; Trifi-Farah N; Marghali S Ecotoxicol Environ Saf; 2019 May; 172():45-52. PubMed ID: 30677744 [TBL] [Abstract][Full Text] [Related]
14. The sweet sorghum SbWRKY50 is negatively involved in salt response by regulating ion homeostasis. Song Y; Li J; Sui Y; Han G; Zhang Y; Guo S; Sui N Plant Mol Biol; 2020 Apr; 102(6):603-614. PubMed ID: 32052233 [TBL] [Abstract][Full Text] [Related]
15. SbCASP4 improves salt exclusion by enhancing the root apoplastic barrier. Wei X; Liu L; Lu C; Yuan F; Han G; Wang B Planta; 2021 Sep; 254(4):81. PubMed ID: 34554320 [TBL] [Abstract][Full Text] [Related]
16. Salt acclimation in sorghum plants by exogenous proline: physiological and biochemical changes and regulation of proline metabolism. de Freitas PAF; de Carvalho HH; Costa JH; Miranda RS; Saraiva KDDC; de Oliveira FDB; Coelho DG; Prisco JT; Gomes-Filho E Plant Cell Rep; 2019 Mar; 38(3):403-416. PubMed ID: 30684024 [TBL] [Abstract][Full Text] [Related]
17. Insights into the physiological responses of the facultative halophyte Aeluropus littoralis to the combined effects of salinity and phosphorus availability. Talbi Zribi O; Barhoumi Z; Kouas S; Ghandour M; Slama I; Abdelly C J Plant Physiol; 2015 Sep; 189():1-10. PubMed ID: 26476701 [TBL] [Abstract][Full Text] [Related]
18. Cloning two P5CS genes from bioenergy sorghum and their expression profiles under abiotic stresses and MeJA treatment. Su M; Li XF; Ma XY; Peng XJ; Zhao AG; Cheng LQ; Chen SY; Liu GS Plant Sci; 2011 Dec; 181(6):652-9. PubMed ID: 21958707 [TBL] [Abstract][Full Text] [Related]
19. The response of sweet sorghum cultivars to salt stress and accumulation of Na+, Cl- and K+ ions in relation to salinity. Almodares A; Hadi MR; Kholdebarin B; Samedani B; Kharazian ZA J Environ Biol; 2014 Jul; 35(4):733-9. PubMed ID: 25004761 [TBL] [Abstract][Full Text] [Related]
20. New insights into molecular targets of salt tolerance in sorghum leaves elicited by ammonium nutrition. Oliveira FDB; Miranda RS; Araújo GDS; Coelho DG; Lobo MDP; Paula-Marinho SO; Lopes LS; Monteiro-Moreira ACO; Carvalho HH; Gomes-Filho E Plant Physiol Biochem; 2020 Sep; 154():723-734. PubMed ID: 32763797 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]