These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 32648544)

  • 1. Real-time in vivo imaging of extracellular ATP in the brain with a hybrid-type fluorescent sensor.
    Kitajima N; Takikawa K; Sekiya H; Satoh K; Asanuma D; Sakamoto H; Takahashi S; Hanaoka K; Urano Y; Namiki S; Iino M; Hirose K
    Elife; 2020 Jul; 9():. PubMed ID: 32648544
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Kitajima N; Takikawa K; Sekiya H; Asanuma D; Sakamoto H; Namiki S; Iino M; Hirose K
    Bio Protoc; 2021 Jun; 11(11):e4046. PubMed ID: 34250212
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Imaging extracellular ATP with a genetically-encoded, ratiometric fluorescent sensor.
    Conley JM; Radhakrishnan S; Valentino SA; Tantama M
    PLoS One; 2017; 12(11):e0187481. PubMed ID: 29121644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Planar implantable sensor for in vivo measurement of cellular oxygen metabolism in brain tissue.
    Tsytsarev V; Akkentli F; Pumbo E; Tang Q; Chen Y; Erzurumlu RS; Papkovsky DB
    J Neurosci Methods; 2017 Apr; 281():1-6. PubMed ID: 28219725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. P2X-GCaMPs as Versatile Tools for Imaging Extracellular ATP Signaling.
    Ollivier M; Beudez J; Linck N; Grutter T; Compan V; Rassendren F
    eNeuro; 2021; 8(1):. PubMed ID: 33380526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A sensitive GRAB sensor for detecting extracellular ATP in vitro and in vivo.
    Wu Z; He K; Chen Y; Li H; Pan S; Li B; Liu T; Xi F; Deng F; Wang H; Du J; Jing M; Li Y
    Neuron; 2022 Mar; 110(5):770-782.e5. PubMed ID: 34942116
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid and Specific Imaging of Extracellular Signaling Molecule Adenosine Triphosphate with a Self-Phosphorylating DNAzyme.
    Zhao D; Chang D; Zhang Q; Chang Y; Liu B; Sun C; Li Z; Dong C; Liu M; Li Y
    J Am Chem Soc; 2021 Sep; 143(37):15084-15090. PubMed ID: 34415153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Organic electrochemical transistor arrays for real-time mapping of evoked neurotransmitter release in vivo.
    Xie K; Wang N; Lin X; Wang Z; Zhao X; Fang P; Yue H; Kim J; Luo J; Cui S; Yan F; Shi P
    Elife; 2020 Feb; 9():. PubMed ID: 32043970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Water-Soluble Conjugated Polymer as a Fluorescent Probe for Monitoring Adenosine Triphosphate Level Fluctuation in Cell Membranes during Cell Apoptosis and in Vivo.
    Huang B; Geng Z; Yan S; Li Z; Cai J; Wang Z
    Anal Chem; 2017 Sep; 89(17):8816-8821. PubMed ID: 28752761
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct, Real-Time Detection of Adenosine Triphosphate Release from Astrocytes in Three-Dimensional Culture Using an Integrated Electrochemical Aptamer-Based Sensor.
    Santos-Cancel M; Simpson LW; Leach JB; White RJ
    ACS Chem Neurosci; 2019 Apr; 10(4):2070-2079. PubMed ID: 30754968
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Imaging of Intracellular ATP in Organotypic Tissue Slices of the Mouse Brain using the FRET-based Sensor ATeam1.03YEMK.
    Lerchundi R; Kafitz KW; Färfers M; Beyer F; Huang N; Rose CR
    J Vis Exp; 2019 Dec; (154):. PubMed ID: 31904744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ratiometric BRET Measurements of ATP with a Genetically-Encoded Luminescent Sensor.
    Min SH; French AR; Trull KJ; Tat K; Varney SA; Tantama M
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31405152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of Osmotic Shock-Induced Extracellular Nucleotide Release with a Genetically Encoded Fluorescent Sensor of ADP and ATP.
    Trull KJ; Miller P; Tat K; Varney SA; Conley JM; Tantama M
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31344821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reformulation of an extant ATPase active site to mimic ancestral GTPase activity reveals a nucleotide base requirement for function.
    Updegrove TB; Harke J; Anantharaman V; Yang J; Gopalan N; Wu D; Piszczek G; Stevenson DM; Amador-Noguez D; Wang JD; Aravind L; Ramamurthi KS
    Elife; 2021 Mar; 10():. PubMed ID: 33704064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical ATP biosensor for extracellular ATP measurement.
    Wang C; Huang CY; Lin WC
    Biosens Bioelectron; 2013 May; 43():355-61. PubMed ID: 23357001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering a Reversible Fluorescent Probe for Real-Time Live-Cell Imaging and Quantification of Mitochondrial ATP.
    Ren TB; Wen SY; Wang L; Lu P; Xiong B; Yuan L; Zhang XB
    Anal Chem; 2020 Mar; 92(6):4681-4688. PubMed ID: 32098468
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuronal complexity is attenuated in preclinical models of migraine and restored by HDAC6 inhibition.
    Bertels Z; Singh H; Dripps I; Siegersma K; Tipton AF; Witkowski WD; Sheets Z; Shah P; Conway C; Mangutov E; Ao M; Petukhova V; Karumudi B; Petukhov PA; Baca SM; Rasenick MM; Pradhan AA
    Elife; 2021 Apr; 10():. PubMed ID: 33856345
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.