These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 32648544)

  • 21. Imaging changes in the cytosolic ATP-to-ADP ratio.
    Tantama M; Yellen G
    Methods Enzymol; 2014; 547():355-71. PubMed ID: 25416365
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Ga(3+)self-assembled fluorescent probe for ATP imaging in vivo.
    Xiao L; Sun S; Pei Z; Pei Y; Pang Y; Xu Y
    Biosens Bioelectron; 2015 Mar; 65():166-70. PubMed ID: 25461153
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Monitoring ATP dynamics in electrically active white matter tracts.
    Trevisiol A; Saab AS; Winkler U; Marx G; Imamura H; Möbius W; Kusch K; Nave KA; Hirrlinger J
    Elife; 2017 Apr; 6():. PubMed ID: 28414271
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-trial imaging of spikes and synaptic potentials in single neurons in brain slices with genetically encoded hybrid voltage sensor.
    Ghitani N; Bayguinov PO; Ma Y; Jackson MB
    J Neurophysiol; 2015 Feb; 113(4):1249-59. PubMed ID: 25411462
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lighting up ATP in cells and tissues using a simple aptamer-based fluorescent probe.
    Liu W; Zhu X; Mozneb M; Nagahara L; Hu TY; Li CZ
    Mikrochim Acta; 2021 Sep; 188(10):352. PubMed ID: 34554325
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Near-Infrared Fluorescence MOF Nanoprobe for Adenosine Triphosphate-Guided Imaging in Colitis.
    Zhao YT; Chen XX; Jiang WL; Li Y; Fei J; Li CY
    ACS Appl Mater Interfaces; 2020 Oct; 12(42):47840-47847. PubMed ID: 32981314
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intracellular ATP levels in mouse cortical excitatory neurons varies with sleep-wake states.
    Natsubori A; Tsunematsu T; Karashima A; Imamura H; Kabe N; Trevisiol A; Hirrlinger J; Kodama T; Sanagi T; Masamoto K; Takata N; Nave KA; Matsui K; Tanaka KF; Honda M
    Commun Biol; 2020 Sep; 3(1):491. PubMed ID: 32895482
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aptamer fluorescence anisotropy sensors for adenosine triphosphate by comprehensive screening tetramethylrhodamine labeled nucleotides.
    Zhao Q; Lv Q; Wang H
    Biosens Bioelectron; 2015 Aug; 70():188-93. PubMed ID: 25814408
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neuron labeling with rhodamine-conjugated Gd-based MRI contrast agents delivered to the brain via focused ultrasound.
    Morse SV; Boltersdorf T; Harriss BI; Chan TG; Baxan N; Jung HS; Pouliopoulos AN; Choi JJ; Long NJ
    Theranostics; 2020; 10(6):2659-2674. PubMed ID: 32194827
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CMOS-Based Redox-Type Label-Free ATP Image Sensor for In Vitro Sensitive Imaging of Extracellular ATP.
    Doi H; Horio T; Choi YJ; Takahashi K; Noda T; Sawada K
    Sensors (Basel); 2021 Dec; 22(1):. PubMed ID: 35009624
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Purinergic signaling in cochlear supporting cells reduces hair cell excitability by increasing the extracellular space.
    Babola TA; Kersbergen CJ; Wang HC; Bergles DE
    Elife; 2020 Jan; 9():. PubMed ID: 31913121
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A turn-on fluorescence sensor for rapid sensing of ATP based on luminescence resonance energy transfer between upconversion nanoparticles and Cy3 in vivo or vitro.
    Xu J; Li H; Arumugam SS; Rong Y; Wang P; Chen Q
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Jan; 265():120341. PubMed ID: 34492515
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of genetically encoded sensors to monitor cytosolic ATP/ADP ratio in living cells.
    Tarasov AI; Rutter GA
    Methods Enzymol; 2014; 542():289-311. PubMed ID: 24862272
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous detection of ATP and GTP by covalently linked fluorescent ribonucleopeptide sensors.
    Nakano S; Fukuda M; Tamura T; Sakaguchi R; Nakata E; Morii T
    J Am Chem Soc; 2013 Mar; 135(9):3465-73. PubMed ID: 23373863
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A tumor-targeting near-infrared fluorescent probe for real-time imaging ATP in cancer cells and mice.
    Jiang WL; Wang WX; Wang ZQ; Tan M; Mao GJ; Li Y; Li CY
    Anal Chim Acta; 2022 May; 1206():339798. PubMed ID: 35473863
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Using FRET-Based Fluorescent Sensors to Monitor Cytosolic and Membrane-Proximal Extracellular ATP Levels.
    Kaschubowski KE; Kraft AE; Nikolaev VO; Haag F
    Methods Mol Biol; 2020; 2041():223-231. PubMed ID: 31646492
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A supramolecule based fluorescence turn-on and ratiometric sensor for ATP in aqueous solution.
    Singh VR; Singh PK
    J Mater Chem B; 2020 Feb; 8(6):1182-1190. PubMed ID: 31957759
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Lysosomal ATP imaging in living cells by a water-soluble cationic polythiophene derivative.
    Huang BH; Geng ZR; Ma XY; Zhang C; Zhang ZY; Wang ZL
    Biosens Bioelectron; 2016 Sep; 83():213-20. PubMed ID: 27131993
    [TBL] [Abstract][Full Text] [Related]  

  • 39.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.