These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 32648561)

  • 1. A system for the high-throughput measurement of the shear modulus distribution of human red blood cells.
    Saadat A; Huyke DA; Oyarzun DI; Escobar PV; Øvreeide IH; Shaqfeh ESG; Santiago JG
    Lab Chip; 2020 Aug; 20(16):2927-2936. PubMed ID: 32648561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microconfined flow behavior of red blood cells.
    Tomaiuolo G; Lanotte L; D'Apolito R; Cassinese A; Guido S
    Med Eng Phys; 2016 Jan; 38(1):11-6. PubMed ID: 26071649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical and experimental study on the development of electric sensor as for measurement of red blood cell deformability in microchannels.
    Tatsumi K; Katsumoto Y; Fujiwara R; Nakabe K
    Sensors (Basel); 2012; 12(8):10566-83. PubMed ID: 23112616
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of plasma-derived extracellular vesicles on erythrocyte deformability in polymicrobial sepsis.
    Subramani K; Raju SP; Chu X; Warren M; Pandya CD; Hoda N; Fulzele S; Raju R
    Int Immunopharmacol; 2018 Dec; 65():244-247. PubMed ID: 30340103
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extensional-Flow Impedance Cytometer for Contactless and Optics-Free Erythrocyte Deformability Analysis.
    Reale R; De Ninno A; Nepi T; Bisegna P; Caselli F
    IEEE Trans Biomed Eng; 2023 Feb; 70(2):565-572. PubMed ID: 35939464
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated automated particle tracking microfluidic enables high-throughput cell deformability cytometry for red cell disorders.
    Guruprasad P; Mannino RG; Caruso C; Zhang H; Josephson CD; Roback JD; Lam WA
    Am J Hematol; 2019 Feb; 94(2):189-199. PubMed ID: 30417938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels.
    Korin N; Bransky A; Dinnar U
    J Biomech; 2007; 40(9):2088-95. PubMed ID: 17188279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of red blood cell deformability change during blood storage.
    Zheng Y; Chen J; Cui T; Shehata N; Wang C; Sun Y
    Lab Chip; 2014 Feb; 14(3):577-83. PubMed ID: 24296983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Start-up shape dynamics of red blood cells in microcapillary flow.
    Tomaiuolo G; Guido S
    Microvasc Res; 2011 Jul; 82(1):35-41. PubMed ID: 21397612
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium/protein kinase C signaling mechanisms in shear-induced mechanical responses of red blood cells.
    Ugurel E; Kisakurek ZB; Aksu Y; Goksel E; Cilek N; Yalcin O
    Microvasc Res; 2021 May; 135():104124. PubMed ID: 33359148
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deformability measurement of red blood cells using a microfluidic channel array and an air cavity in a driving syringe with high throughput and precise detection of subpopulations.
    Kang YJ; Ha YR; Lee SJ
    Analyst; 2016 Jan; 141(1):319-30. PubMed ID: 26616556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Technologies for measuring red blood cell deformability.
    Matthews K; Lamoureux ES; Myrand-Lapierre ME; Duffy SP; Ma H
    Lab Chip; 2022 Mar; 22(7):1254-1274. PubMed ID: 35266475
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic analysis of red blood cell deformability.
    Guo Q; Duffy SP; Matthews K; Santoso AT; Scott MD; Ma H
    J Biomech; 2014 Jun; 47(8):1767-76. PubMed ID: 24767871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The relationship between red blood cell deformability metrics and perfusion of an artificial microvascular network.
    Sosa JM; Nielsen ND; Vignes SM; Chen TG; Shevkoplyas SS
    Clin Hemorheol Microcirc; 2014; 57(3):275-89. PubMed ID: 23603326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-throughput single-cell assay for precise measurement of the intrinsic mechanical properties and shape characteristics of red blood cells.
    Wei Q; Xiong Y; Ma Y; Liu D; Lu Y; Zhang S; Wang X; Huang H; Liu Y; Dao M; Gong X
    Lab Chip; 2024 Jan; 24(2):305-316. PubMed ID: 38087958
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Throughput Microfluidic Characterization of Erythrocyte Shapes and Mechanical Variability.
    Reichel F; Mauer J; Nawaz AA; Gompper G; Guck J; Fedosov DA
    Biophys J; 2019 Jul; 117(1):14-24. PubMed ID: 31235179
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Red blood cell aggregates and their effect on non-Newtonian blood viscosity at low hematocrit in a two-fluid low shear rate microfluidic system.
    Mehri R; Mavriplis C; Fenech M
    PLoS One; 2018; 13(7):e0199911. PubMed ID: 30024907
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of the distribution of red blood cell deformability using an automated rheoscope.
    Dobbe JG; Streekstra GJ; Hardeman MR; Ince C; Grimbergen CA
    Cytometry; 2002 Dec; 50(6):313-25. PubMed ID: 12497593
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-dimensional strain-hardening membrane model for large deformation behavior of multiple red blood cells in high shear conditions.
    Ye SS; Ng YC; Tan J; Leo HL; Kim S
    Theor Biol Med Model; 2014 May; 11():19. PubMed ID: 24885482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling of Biomechanics and Biorheology of Red Blood Cells in Type 2 Diabetes Mellitus.
    Chang HY; Li X; Karniadakis GE
    Biophys J; 2017 Jul; 113(2):481-490. PubMed ID: 28746858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.