These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 32648654)
1. 3D Microenvironment Stiffness Regulates Tumor Spheroid Growth and Mechanics via p21 and ROCK. Taubenberger AV; Girardo S; Träber N; Fischer-Friedrich E; Kräter M; Wagner K; Kurth T; Richter I; Haller B; Binner M; Hahn D; Freudenberg U; Werner C; Guck J Adv Biosyst; 2019 Sep; 3(9):e1900128. PubMed ID: 32648654 [TBL] [Abstract][Full Text] [Related]
2. Mapping Tumor Spheroid Mechanics in Dependence of 3D Microenvironment Stiffness and Degradability by Brillouin Microscopy. Mahajan V; Beck T; Gregorczyk P; Ruland A; Alberti S; Guck J; Werner C; Schlüßler R; Taubenberger AV Cancers (Basel); 2021 Nov; 13(21):. PubMed ID: 34771711 [TBL] [Abstract][Full Text] [Related]
3. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels. Wang C; Tong X; Yang F Mol Pharm; 2014 Jul; 11(7):2115-25. PubMed ID: 24712441 [TBL] [Abstract][Full Text] [Related]
4. The mechanical microenvironment regulates ovarian cancer cell morphology, migration, and spheroid disaggregation. McKenzie AJ; Hicks SR; Svec KV; Naughton H; Edmunds ZL; Howe AK Sci Rep; 2018 May; 8(1):7228. PubMed ID: 29740072 [TBL] [Abstract][Full Text] [Related]
5. Thermoresponsive poly(N-isopropylacrylamide) hydrogel substrates micropatterned with poly(ethylene glycol) hydrogel for adipose mesenchymal stem cell spheroid formation and retrieval. Kim G; Jung Y; Cho K; Lee HJ; Koh WG Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():111128. PubMed ID: 32600725 [TBL] [Abstract][Full Text] [Related]
6. Glioblastoma spheroid growth and chemotherapeutic responses in single and dual-stiffness hydrogels. Bruns J; Egan T; Mercier P; Zustiak SP Acta Biomater; 2023 Jun; 163():400-414. PubMed ID: 35659918 [TBL] [Abstract][Full Text] [Related]
7. Fabrication of Spheroids with Uniform Size by Self-Assembly of a Micro-Scaled Cell Sheet (μCS): The Effect of Cell Contraction on Spheroid Formation. Kim EM; Lee YB; Byun H; Chang HK; Park J; Shin H ACS Appl Mater Interfaces; 2019 Jan; 11(3):2802-2813. PubMed ID: 30586277 [TBL] [Abstract][Full Text] [Related]
8. An mDia2/ROCK signaling axis regulates invasive egress from epithelial ovarian cancer spheroids. Pettee KM; Dvorak KM; Nestor-Kalinoski AL; Eisenmann KM PLoS One; 2014; 9(2):e90371. PubMed ID: 24587343 [TBL] [Abstract][Full Text] [Related]
9. Stromal cell-laden 3D hydrogel microwell arrays as tumor microenvironment model for studying stiffness dependent stromal cell-cancer interactions. Yue X; Nguyen TD; Zellmer V; Zhang S; Zorlutuna P Biomaterials; 2018 Jul; 170():37-48. PubMed ID: 29653286 [TBL] [Abstract][Full Text] [Related]
10. Tumor Spheroid Fabrication and Encapsulation in Polyethylene Glycol Hydrogels for Studying Spheroid-Matrix Interactions. Bruns J; Nejat S; Faber A; Zustiak SP J Vis Exp; 2023 Sep; (199):. PubMed ID: 37811942 [TBL] [Abstract][Full Text] [Related]
11. A three-dimensional spheroidal cancer model based on PEG-fibrinogen hydrogel microspheres. Pradhan S; Clary JM; Seliktar D; Lipke EA Biomaterials; 2017 Jan; 115():141-154. PubMed ID: 27889665 [TBL] [Abstract][Full Text] [Related]
12. 3D Volumetric Mechanosensation of MCF7 Breast Cancer Spheroids in a Linear Stiffness Gradient GelAGE. Vahala D; Amos SE; Sacchi M; Soliman BG; Hepburn MS; Mowla A; Li J; Jeong JH; Astell C; Hwang Y; Kennedy BF; Lim KS; Choi YS Adv Healthc Mater; 2023 Dec; 12(31):e2301506. PubMed ID: 37670531 [TBL] [Abstract][Full Text] [Related]
13. Modulation of Huh7.5 spheroid formation and functionality using modified PEG-based hydrogels of different stiffness. Lee BH; Kim MH; Lee JH; Seliktar D; Cho NJ; Tan LP PLoS One; 2015; 10(2):e0118123. PubMed ID: 25692976 [TBL] [Abstract][Full Text] [Related]
14. Galactosylated reversible hydrogels as scaffold for HepG2 spheroid generation. Wu Y; Zhao Z; Guan Y; Zhang Y Acta Biomater; 2014 May; 10(5):1965-74. PubMed ID: 24382516 [TBL] [Abstract][Full Text] [Related]
15. ROCK isoforms differentially modulate cancer cell motility by mechanosensing the substrate stiffness. Peng Y; Chen Z; Chen Y; Li S; Jiang Y; Yang H; Wu C; You F; Zheng C; Zhu J; Tan Y; Qin X; Liu Y Acta Biomater; 2019 Apr; 88():86-101. PubMed ID: 30771534 [TBL] [Abstract][Full Text] [Related]
16. Matrix Stiffness-Regulated Growth of Breast Tumor Spheroids and Their Response to Chemotherapy. Li Y; Khuu N; Prince E; Tao H; Zhang N; Chen Z; Gevorkian A; McGuigan AP; Kumacheva E Biomacromolecules; 2021 Feb; 22(2):419-429. PubMed ID: 33136364 [TBL] [Abstract][Full Text] [Related]
17. Dynamic Mechanics-Modulated Hydrogels to Regulate the Differentiation of Stem-Cell Spheroids in Soft Microniches and Modeling of the Nonlinear Behavior. Zhang J; Yang H; Abali BE; Li M; Xia Y; Haag R Small; 2019 Jul; 15(30):e1901920. PubMed ID: 31183958 [TBL] [Abstract][Full Text] [Related]
18. Rationally designed β-cyclodextrin-crosslinked polyacrylamide hydrogels for cell spheroid formation and 3D tumor model construction. Chen T; Wen Y; Song X; Zhang Z; Zhu J; Tian X; Zeng S; Li J Carbohydr Polym; 2024 Sep; 339():122253. PubMed ID: 38823920 [TBL] [Abstract][Full Text] [Related]
19. Independently Tuning the Biochemical and Mechanical Properties of 3D Hyaluronan-Based Hydrogels with Oxime and Diels-Alder Chemistry to Culture Breast Cancer Spheroids. Baker AEG; Tam RY; Shoichet MS Biomacromolecules; 2017 Dec; 18(12):4373-4384. PubMed ID: 29040808 [TBL] [Abstract][Full Text] [Related]
20. A cell-instructive hydrogel to regulate malignancy of 3D tumor spheroids with matrix rigidity. Liang Y; Jeong J; DeVolder RJ; Cha C; Wang F; Tong YW; Kong H Biomaterials; 2011 Dec; 32(35):9308-15. PubMed ID: 21911252 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]