BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 32648695)

  • 1. A Microfluidic System for One-Chip Harvesting of Single-Cell-Laden Hydrogels in Culture Medium.
    Nan L; Yang Z; Lyu H; Lau KYY; Shum HC
    Adv Biosyst; 2019 Nov; 3(11):e1900076. PubMed ID: 32648695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-laden microgel prepared using a biocompatible aqueous two-phase strategy.
    Liu Y; Nambu NO; Taya M
    Biomed Microdevices; 2017 Sep; 19(3):55. PubMed ID: 28612283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Droplet-Based Microfluidic Templating of Polyglycerol-Based Microgels for the Encapsulation of Cells: A Comparative Study.
    Kapourani E; Neumann F; Achazi K; Dernedde J; Haag R
    Macromol Biosci; 2018 Oct; 18(10):e1800116. PubMed ID: 29992778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzymatic Crosslinking of Polymer Conjugates is Superior over Ionic or UV Crosslinking for the On-Chip Production of Cell-Laden Microgels.
    Henke S; Leijten J; Kemna E; Neubauer M; Fery A; van den Berg A; van Apeldoorn A; Karperien M
    Macromol Biosci; 2016 Oct; 16(10):1524-1532. PubMed ID: 27440382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-step generation of cell-laden microgels using double emulsion drops with a sacrificial ultra-thin oil shell.
    Choi CH; Wang H; Lee H; Kim JH; Zhang L; Mao A; Mooney DJ; Weitz DA
    Lab Chip; 2016 Apr; 16(9):1549-55. PubMed ID: 27070224
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic-templated cell-laden microgels fabricated using phototriggered imine-crosslinking as injectable and adaptable granular gels for bone regeneration.
    An C; Zhou R; Zhang H; Zhang Y; Liu W; Liu J; Bao B; Sun K; Ren C; Zhang Y; Lin Q; Zhang L; Cheng F; Song J; Zhu L; Wang H
    Acta Biomater; 2023 Feb; 157():91-107. PubMed ID: 36427687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gravity-Oriented Microfluidic Device for Biocompatible End-to-End Fabrication of Cell-Laden Microgels.
    Chen S; Wu Z; Zhang Q; Li Y; Yao H; Chen S; Xie T; Lin JM
    Small; 2024 Jun; 20(24):e2306725. PubMed ID: 38287726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An integrated microfluidic flow-focusing platform for on-chip fabrication and filtration of cell-laden microgels.
    Mohamed MGA; Kheiri S; Islam S; Kumar H; Yang A; Kim K
    Lab Chip; 2019 Apr; 19(9):1621-1632. PubMed ID: 30896015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing the biocompatibility of microfluidics-assisted fabrication of cell-laden microgels with channel geometry.
    Kim S; Oh J; Cha C
    Colloids Surf B Biointerfaces; 2016 Nov; 147():1-8. PubMed ID: 27478957
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Label-Free On-Chip Selective Extraction of Cell-Aggregate-Laden Microcapsules from Oil into Aqueous Solution with Optical Sensor and Dielectrophoresis.
    Sun M; Durkin P; Li J; Toth TL; He X
    ACS Sens; 2018 Feb; 3(2):410-417. PubMed ID: 29299919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Crosslinker length dictates step-growth hydrogel network formation dynamics and allows rapid on-chip photoencapsulation.
    Jiang Z; Shaha R; McBride R; Jiang K; Tang M; Xu B; Goroncy AK; Frick C; Oakey J
    Biofabrication; 2020 Apr; 12(3):035006. PubMed ID: 32160605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Centering Single Cells in Microgels via Delayed Crosslinking Supports Long-Term 3D Culture by Preventing Cell Escape.
    Kamperman T; Henke S; Visser CW; Karperien M; Leijten J
    Small; 2017 Jun; 13(22):. PubMed ID: 28452168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous microfluidic encapsulation of single mesenchymal stem cells using alginate microgels as injectable fillers for bone regeneration.
    An C; Liu W; Zhang Y; Pang B; Liu H; Zhang Y; Zhang H; Zhang L; Liao H; Ren C; Wang H
    Acta Biomater; 2020 Jul; 111():181-196. PubMed ID: 32450230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Supramolecular hydrogel capsules based on PEG: a step toward degradable biomaterials with rational design.
    Rossow T; Bayer S; Albrecht R; Tzschucke CC; Seiffert S
    Macromol Rapid Commun; 2013 Sep; 34(17):1401-7. PubMed ID: 23929582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multifunctional microfluidic platform for generation, trapping and release of droplets in a double laminar flow.
    Carreras MP; Wang S
    J Biotechnol; 2017 Jun; 251():106-111. PubMed ID: 28450257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microfluidic generation of composite biopolymer microgels with tunable compositions and mechanical properties.
    Chau M; Abolhasani M; Thérien-Aubin H; Li Y; Wang Y; Velasco D; Tumarkin E; Ramachandran A; Kumacheva E
    Biomacromolecules; 2014 Jul; 15(7):2419-25. PubMed ID: 24931723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Delivery of Endothelial Cell-Laden Microgel Elicits Angiogenesis in Self-Assembling Ultrashort Peptide Hydrogels In Vitro.
    Ramirez-Calderon G; Susapto HH; Hauser CAE
    ACS Appl Mater Interfaces; 2021 Jun; 13(25):29281-29292. PubMed ID: 34142544
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in Microfluidics-Based Technologies for Single Cell Culture.
    García Alonso D; Yu M; Qu H; Ma L; Shen F
    Adv Biosyst; 2019 Nov; 3(11):e1900003. PubMed ID: 32648694
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and simulation of a novel integrated microfluidic chip for cell isolation and culture.
    Tabatabaei SA; Javaherchian J
    Biotechnol Appl Biochem; 2023 Jun; 70(3):1230-1244. PubMed ID: 36577513
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An on-chip microfluidic pressure regulator that facilitates reproducible loading of cells and hydrogels into microphysiological system platforms.
    Wang X; Phan DTT; Zhao D; George SC; Hughes CCW; Lee AP
    Lab Chip; 2016 Mar; 16(5):868-876. PubMed ID: 26879519
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.