These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 32648704)

  • 1. Directed Growth of Biomimetic Microcompartments.
    Ivanov I; Lira RB; Tang TD; Franzmann T; Klosin A; da Silva LC; Hyman A; Landfester K; Lipowsky R; Sundmacher K; Dimova R
    Adv Biosyst; 2019 Jun; 3(6):e1800314. PubMed ID: 32648704
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailoring the appearance: what will synthetic cells look like?
    Spoelstra WK; Deshpande S; Dekker C
    Curr Opin Biotechnol; 2018 Jun; 51():47-56. PubMed ID: 29183001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coacervate Droplets for Synthetic Cells.
    Lin Z; Beneyton T; Baret JC; Martin N
    Small Methods; 2023 Dec; 7(12):e2300496. PubMed ID: 37462244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocatalytic self-assembled synthetic vesicles and coacervates: From single compartment to artificial cells.
    Gaur D; Dubey NC; Tripathi BP
    Adv Colloid Interface Sci; 2022 Jan; 299():102566. PubMed ID: 34864354
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How Droplets Can Accelerate Reactions─Coacervate Protocells as Catalytic Microcompartments.
    Smokers IBA; Visser BS; Slootbeek AD; Huck WTS; Spruijt E
    Acc Chem Res; 2024 Jul; 57(14):1885-1895. PubMed ID: 38968602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacing Coacervates with Membranes: From Artificial Organelles and Hybrid Protocells to Intracellular Delivery.
    Lu T; Javed S; Bonfio C; Spruijt E
    Small Methods; 2023 Dec; 7(12):e2300294. PubMed ID: 37354057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prebiological Membranes and Their Role in the Emergence of Early Cellular Life.
    Sarkar S; Das S; Dagar S; Joshi MP; Mungi CV; Sawant AA; Patki GM; Rajamani S
    J Membr Biol; 2020 Dec; 253(6):589-608. PubMed ID: 33200235
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microfluidic Handling and Analysis of Giant Vesicles for Use as Artificial Cells: A Review.
    Robinson T
    Adv Biosyst; 2019 Jun; 3(6):e1800318. PubMed ID: 32648705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization of All-in-Water Emulsions To Form Capsules as Artificial Cells.
    Douliez JP; Perro A; Béven L
    Chembiochem; 2019 Oct; 20(20):2546-2552. PubMed ID: 31087750
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthetic cellularity based on non-lipid micro-compartments and protocell models.
    Li M; Huang X; Tang TY; Mann S
    Curr Opin Chem Biol; 2014 Oct; 22():1-11. PubMed ID: 24952153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dipeptide coacervates as artificial membraneless organelles for bioorthogonal catalysis.
    Cao S; Ivanov T; Heuer J; Ferguson CTJ; Landfester K; Caire da Silva L
    Nat Commun; 2024 Jan; 15(1):39. PubMed ID: 38169470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fatty Acid-Based Coacervates as a Membrane-free Protocell Model.
    Zhou L; Koh JJ; Wu J; Fan X; Chen H; Hou X; Jiang L; Lu X; Li Z; He C
    Bioconjug Chem; 2022 Mar; 33(3):444-451. PubMed ID: 35138820
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptide-based coacervates as biomimetic protocells.
    Abbas M; Lipiński WP; Wang J; Spruijt E
    Chem Soc Rev; 2021 Mar; 50(6):3690-3705. PubMed ID: 33616129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nature's lessons in design: nanomachines to scaffold, remodel and shape membrane compartments.
    Beales PA; Ciani B; Cleasby AJ
    Phys Chem Chem Phys; 2015 Jun; 17(24):15489-507. PubMed ID: 25805402
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoparticle-Assembled Vacuolated Coacervates Control Macromolecule Spatiotemporal Distribution to Provide a Stable Segregated Cell Microenvironment.
    Zhao P; Yang B; Xu X; Lai NC; Li R; Yang X; Bian L
    Adv Mater; 2021 Mar; 33(9):e2007209. PubMed ID: 33506543
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bacteria-Inspired Aqueous-in-Aqueous Compartmentalization by In Situ Interfacial Biomineralization.
    Yuan H; Li F; Jia L; Guo T; Kong T; Meng T
    Small Methods; 2023 Feb; 7(2):e2201309. PubMed ID: 36549693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards self-assembled hybrid artificial cells: novel bottom-up approaches to functional synthetic membranes.
    Brea RJ; Hardy MD; Devaraj NK
    Chemistry; 2015 Sep; 21(36):12564-70. PubMed ID: 26149747
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Complex Coacervate Materials as Artificial Cells.
    Cook AB; Novosedlik S; van Hest JCM
    Acc Mater Res; 2023 Mar; 4(3):287-298. PubMed ID: 37009061
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mastering Complexity: Towards Bottom-up Construction of Multifunctional Eukaryotic Synthetic Cells.
    Göpfrich K; Platzman I; Spatz JP
    Trends Biotechnol; 2018 Sep; 36(9):938-951. PubMed ID: 29685820
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomolecule-polymer hybrid compartments: combining the best of both worlds.
    Meyer CE; Abram SL; Craciun I; Palivan CG
    Phys Chem Chem Phys; 2020 May; 22(20):11197-11218. PubMed ID: 32393957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.