These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 32648871)

  • 1. Dual-binding conjugates of diaromatic guanidines and porphyrins for recognition of G-quadruplexes.
    Grover J; Trujillo C; Saad M; Emandi G; Stipaničev N; Bernhard SSR; Guédin A; Mergny JL; Senge MO; Rozas I
    Org Biomol Chem; 2020 Aug; 18(29):5617-5624. PubMed ID: 32648871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aiming to improve binding of porphyrin diphenyl guanidinium conjugates to guanine-quadruplexes: When size matters.
    Stipaničev N; Raabe K; Rozas I
    Bioorg Med Chem Lett; 2022 Nov; 75():128954. PubMed ID: 36031019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lowering the overall charge on TMPyP4 improves its selectivity for G-quadruplex DNA.
    Ruan TL; Davis SJ; Powell BM; Harbeck CP; Habdas J; Habdas P; Yatsunyk LA
    Biochimie; 2017 Jan; 132():121-130. PubMed ID: 27840085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous Binding of Hybrid Molecules Constructed with Dual DNA-Binding Components to a G-Quadruplex and Its Proximal Duplex.
    Asamitsu S; Obata S; Phan AT; Hashiya K; Bando T; Sugiyama H
    Chemistry; 2018 Mar; 24(17):4428-4435. PubMed ID: 29380465
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stabilization of guanine quadruplex DNA by the binding of porphyrins with cationic side arms.
    Yamashita T; Uno T; Ishikawa Y
    Bioorg Med Chem; 2005 Apr; 13(7):2423-30. PubMed ID: 15755644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study on the interaction of porphyrin with G-quadruplex DNAs.
    Wei C; Han G; Jia G; Zhou J; Li C
    Biophys Chem; 2008 Sep; 137(1):19-23. PubMed ID: 18599180
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Template-assembled synthetic G-quadruplex (TASQ): a useful system for investigating the interactions of ligands with constrained quadruplex topologies.
    Murat P; Bonnet R; Van der Heyden A; Spinelli N; Labbé P; Monchaud D; Teulade-Fichou MP; Dumy P; Defrancq E
    Chemistry; 2010 May; 16(20):6106-14. PubMed ID: 20397247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective interactions of cationic porphyrins with G-quadruplex structures.
    Han H; Langley DR; Rangan A; Hurley LH
    J Am Chem Soc; 2001 Sep; 123(37):8902-13. PubMed ID: 11552797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of the first dual G-triplex/G-quadruplex stabilizing compound: a new opportunity in the targeting of G-rich DNA structures?
    Amato J; Pagano A; Cosconati S; Amendola G; Fotticchia I; Iaccarino N; Marinello J; De Magis A; Capranico G; Novellino E; Pagano B; Randazzo A
    Biochim Biophys Acta Gen Subj; 2017 May; 1861(5 Pt B):1271-1280. PubMed ID: 27836755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. End-stacking of copper cationic porphyrins on parallel-stranded guanine quadruplexes.
    Evans SE; Mendez MA; Turner KB; Keating LR; Grimes RT; Melchoir S; Szalai VA
    J Biol Inorg Chem; 2007 Nov; 12(8):1235-49. PubMed ID: 17786488
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding Studies of G-Quadruplex DNA and Porphyrins: Cu(T4) vs Sterically Friendly Cu(tD4).
    Gaier AJ; McMillin DR
    Inorg Chem; 2015 May; 54(9):4504-11. PubMed ID: 25885060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two cationic porphyrin isomers showing different multimeric G-quadruplex recognition specificity against monomeric G-quadruplexes.
    Huang XX; Zhu LN; Wu B; Huo YF; Duan NN; Kong DM
    Nucleic Acids Res; 2014 Jul; 42(13):8719-31. PubMed ID: 24939896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porphyrin-based design of bioinspired multitarget quadruplex ligands.
    Laguerre A; Desbois N; Stefan L; Richard P; Gros CP; Monchaud D
    ChemMedChem; 2014 Sep; 9(9):2035-9. PubMed ID: 24678052
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular docking study of binding of TMPyP4 to a bimolecular human telomeric G-quadruplex.
    Ishikawa Y; Fujii S
    Nucleic Acids Symp Ser (Oxf); 2008; (52):173-4. PubMed ID: 18776309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular docking and dynamics simulations on the interaction of cationic porphyrin-anthraquinone hybrids with DNA G-quadruplexes.
    Arba M; Kartasasmita RE; Tjahjono DH
    J Biomol Struct Dyn; 2016; 34(2):427-38. PubMed ID: 25808513
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The NEIL glycosylases remove oxidized guanine lesions from telomeric and promoter quadruplex DNA structures.
    Zhou J; Fleming AM; Averill AM; Burrows CJ; Wallace SS
    Nucleic Acids Res; 2015 Apr; 43(8):4039-54. PubMed ID: 25813041
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions Between Spermine-Derivatized Tentacle Porphyrins and The Human Telomeric DNA G-Quadruplex.
    Sabharwal NC; Chen J; Lee JHJ; Gangemi CMA; D'Urso A; Yatsunyk LA
    Int J Mol Sci; 2018 Nov; 19(11):. PubMed ID: 30469358
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cationic porphyrins with large side arm substituents as resonance light scattering ratiometric probes for specific recognition of nucleic acid G-quadruplexes.
    Zhang LM; Cui YX; Zhu LN; Chu JQ; Kong DM
    Nucleic Acids Res; 2019 Apr; 47(6):2727-2738. PubMed ID: 30715502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular modeling of anti-parallel G-quadruplex DNA/TMPyP complexes.
    Ishikawa Y; Tomisugi Y; Uno T
    Nucleic Acids Symp Ser (Oxf); 2006; (50):331-2. PubMed ID: 17150952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligand 5,10,15,20-tetra(N-methyl-4-pyridyl)porphine (TMPyP4) prefers the parallel propeller-type human telomeric G-quadruplex DNA over its other polymorphs.
    Ali A; Bansal M; Bhattacharya S
    J Phys Chem B; 2015 Jan; 119(1):5-14. PubMed ID: 25526532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.