These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 32649175)

  • 1. Post-translational Succinylation of
    Bonds AC; Yuan T; Werman JM; Jang J; Lu R; Nesbitt NM; Garcia-Diaz M; Sampson NS
    ACS Infect Dis; 2020 Aug; 6(8):2214-2224. PubMed ID: 32649175
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enzymatic β-Oxidation of the Cholesterol Side Chain in
    Yuan T; Werman JM; Yin X; Yang M; Garcia-Diaz M; Sampson NS
    ACS Infect Dis; 2021 Jun; 7(6):1739-1751. PubMed ID: 33826843
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unraveling Cholesterol Catabolism in
    Yang M; Lu R; Guja KE; Wipperman MF; St Clair JR; Bonds AC; Garcia-Diaz M; Sampson NS
    ACS Infect Dis; 2015 Feb; 1(2):110-125. PubMed ID: 26161441
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of an Aldolase Involved in Cholesterol Side Chain Degradation in Mycobacterium tuberculosis.
    Gilbert S; Hood L; Seah SYK
    J Bacteriol; 2018 Jan; 200(2):. PubMed ID: 29109182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A distinct MaoC-like enoyl-CoA hydratase architecture mediates cholesterol catabolism in Mycobacterium tuberculosis.
    Yang M; Guja KE; Thomas ST; Garcia-Diaz M; Sampson NS
    ACS Chem Biol; 2014 Nov; 9(11):2632-45. PubMed ID: 25203216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of fadD19 and echA19 in Sterol Side Chain Degradation by Mycobacterium smegmatis.
    Wrońska N; Brzostek A; Szewczyk R; Soboń A; Dziadek J; Lisowska K
    Molecules; 2016 May; 21(5):. PubMed ID: 27164074
    [TBL] [Abstract][Full Text] [Related]  

  • 7.
    Yuan T; Yang M; Gehring K; Sampson NS
    Biochemistry; 2019 Oct; 58(41):4224-4235. PubMed ID: 31568719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catabolism of the Last Two Steroid Rings in
    Crowe AM; Casabon I; Brown KL; Liu J; Lian J; Rogalski JC; Hurst TE; Snieckus V; Foster LJ; Eltis LD
    mBio; 2017 Apr; 8(2):. PubMed ID: 28377529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal structure of Mycobacterium tuberculosis FadB2 implicated in mycobacterial β-oxidation.
    Cox JAG; Taylor RC; Brown AK; Attoe S; Besra GS; Fütterer K
    Acta Crystallogr D Struct Biol; 2019 Jan; 75(Pt 1):101-108. PubMed ID: 30644849
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Succinylome analysis reveals the involvement of lysine succinylation in metabolism in pathogenic Mycobacterium tuberculosis.
    Yang M; Wang Y; Chen Y; Cheng Z; Gu J; Deng J; Bi L; Chen C; Mo R; Wang X; Ge F
    Mol Cell Proteomics; 2015 Apr; 14(4):796-811. PubMed ID: 25605462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutamate-119 of the large alpha-subunit is the catalytic base in the hydration of 2-trans-enoyl-coenzyme A catalyzed by the multienzyme complex of fatty acid oxidation from Escherichia coli.
    He XY; Yang SY
    Biochemistry; 1997 Sep; 36(36):11044-9. PubMed ID: 9283097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IpdAB, a virulence factor in
    Crowe AM; Workman SD; Watanabe N; Worrall LJ; Strynadka NCJ; Eltis LD
    Proc Natl Acad Sci U S A; 2018 Apr; 115(15):E3378-E3387. PubMed ID: 29581275
    [No Abstract]   [Full Text] [Related]  

  • 13. α-Methyl Acyl CoA Racemase Provides Mycobacterium tuberculosis Catabolic Access to Cholesterol Esters.
    Lu R; Schmitz W; Sampson NS
    Biochemistry; 2015 Sep; 54(37):5669-72. PubMed ID: 26348625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence analysis and structure prediction of enoyl-CoA hydratase from Avicennia marina: implication of various amino acid residues on substrate-enzyme interactions.
    Jabeen U; Salim A
    Phytochemistry; 2013 Oct; 94():36-44. PubMed ID: 23809632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of genes encoding key steroid core oxidation enzymes in fast-growing Mycobacterium spp. strains.
    Bragin EY; Shtratnikova VY; Dovbnya DV; Schelkunov MI; Pekov YA; Malakho SG; Egorova OV; Ivashina TV; Sokolov SL; Ashapkin VV; Donova MV
    J Steroid Biochem Mol Biol; 2013 Nov; 138():41-53. PubMed ID: 23474435
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of novel acyl coenzyme A dehydrogenases involved in bacterial steroid degradation.
    Ruprecht A; Maddox J; Stirling AJ; Visaggio N; Seah SY
    J Bacteriol; 2015 Apr; 197(8):1360-7. PubMed ID: 25645564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Activity of 3-ketosteroid 9α-hydroxylase (KshAB) indicates cholesterol side chain and ring degradation occur simultaneously in Mycobacterium tuberculosis.
    Capyk JK; Casabon I; Gruninger R; Strynadka NC; Eltis LD
    J Biol Chem; 2011 Nov; 286(47):40717-24. PubMed ID: 21987574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recombinant 2-enoyl-CoA hydratase derived from rat peroxisomal multifunctional enzyme 2: role of the hydratase reaction in bile acid synthesis.
    Qin YM; Haapalainen AM; Conry D; Cuebas DA; Hiltunen JK; Novikov DK
    Biochem J; 1997 Dec; 328 ( Pt 2)(Pt 2):377-82. PubMed ID: 9371691
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of glutamate 144 and glutamate 164 in the catalytic mechanism of enoyl-CoA hydratase.
    Hofstein HA; Feng Y; Anderson VE; Tonge PJ
    Biochemistry; 1999 Jul; 38(29):9508-16. PubMed ID: 10413528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacterial Hydratases Involved in Steroid Side Chain Degradation Have Distinct Substrate Specificities.
    Schroeter KL; Abraham N; Rolfe N; Barnshaw R; Diamond J; Seah SYK
    J Bacteriol; 2022 Sep; 204(9):e0023622. PubMed ID: 36000836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.